JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (12): 89-94.doi: 10.6040/j.issn.1671-9352.0.2017.436

Previous Articles     Next Articles

Data separation and its attribute state characteristics

GUO Hua-long, ZHANG Ling   

  1. School of Information Engineering, Longyan University, Longyan 364012, Fujian, China
  • Received:2017-09-04 Online:2017-12-20 Published:2017-12-22

Abstract: This article gives the basic theory of data separation as well as the generation theory of attribute state characteristics for data separation. By employing the structures and dynamic characteristics of inverse P-sets, the concepts of data outer separation, data internal separation and data outer-internal separation are proposed. Moreover, the data separation characteristics and the attribute state characteristics are generated by data separation are analyzed. Then the data supplement theorem, the data deleting theorem and the data supplement-deleting theorem are given. The attribute cardinal theorems of data outer separation, data internal separation and data outer-internal separation are provided. The theoretical results presented in this article show the generation characteristics of data separation.

Key words: data separation, data separation theorem, attribute cardinal theorem, inverse P-sets, attribute state

CLC Number: 

  • O144
[1] 史开泉. 逆P-集合[J]. 山东大学学报(理学版), 2012, 47(1):98-109. SHI Kaiquan. Inverse P-sets[J]. Journal of Shandong University(Natural Science), 2012, 47(1):98-109.
[2] 张凌, 任雪芳. 基数余-亏定理与数据外-内挖掘-分离[J]. 山东大学学报(理学版), 2015, 50(8):7-11. ZHANG Ling, REN Xuefang. Surplus-deficiency theorem of cardinal number and data internal-outer mining-separation[J]. Journal of Shandong University(Natural Science), 2015, 50(8):7-11.
[3] 任雪芳, 张凌, 史开泉. 基数余-亏与逆P-增广矩阵[J]. 山东大学学报(理学版), 2015, 50(10):13-18. REN Xuefang, ZHANG Ling, SHI Kaiquan. Surplus-deficiency of cardinal number and inverse P-augmented matrix[J]. Journal of Shandong University(Natural Science), 2015, 50(10):13-18.
[4] 史开泉, 汤积华, 张凌. 逆P-信息智能融合与信息智能隐藏的隐性传递[J]. 系统工程与电子技术, 2015, 37(3):599-605. SHI Kaiquan, TANG Jihua, ZHANG Ling. Intelligent fusion of inverse packet information and recessive transmission of informations intelligent hiding[J]. Systems Engineering and Electronics, 2015, 37(3):599-605.
[5] 史开泉. P-集合, 逆P-集合与信息智能融合-过滤辨识[J]. 计算机科学, 2012, 39(4):1-13. SHI Kaiquan. P-sets, inverse P-sets and the intelligent fusion-filter identification of information[J]. Computer Science, 2012, 39(4):1-13.
[6] 史开泉, 汤积华. 外逆P-信息智能融合与它的属性析取特征-应用[J]. 计算机科学, 2013, 40(12):239-242. SHI Kaiquan, TANG Jihua. Intelligent fusion of outer inverse packet information and its application of attribute disjunction[J]. Computer Science, 2013, 40(12):239-242.
[7] 徐风生, 于秀清, 史开泉.逆P-信息嵌入-隐藏与它的逆P-推理分离-发现[J]. 计算机科学, 2013, 40(8):200-203. XU Fengsheng, YU Xiuqing, SHI Kaiquan. Embedding-camoflage of inverse P-information and its separation-discovery by inverse P-reasoning[J]. Computer Science, 2013, 40(8):200-203.
[8] 史开泉. P-集合[J]. 山东大学学报(理学版), 2008, 43(11):77-84. SHI Kaiquan. P-sets[J]. Journal of Shandong University(Natural Science), 2008, 43(11):77-84.
[9] SHI Kaiquan. P-sets and its applications[J]. Advances in Systems Science and Applications, 2009, 9(2):209-219.
[10] 史开泉. P-集合与它的应用特征[J]. 计算机科学, 2010, 37(8):1-8. SHI Kaiquan. P-sets and its applied characteristics[J]. Computer Science, 2010, 37(8):1-8.
[11] 史开泉. P-信息规律智能融合与软信息图像智能生成[J]. 山东大学学报(理学版), 2014, 49(4):1-17. SHI Kaiquan. P-information law intelligent fusion and soft information image intelligent generation[J]. Journal of Shandong University(Natural Science), 2014, 49(4):1-17.
[12] 汤积华, 陈保会, 史开泉. P-集合与((-overF),F)-数据生成-辨识[J]. 山东大学学报(理学版), 2009, 44(11):83-92. TANG Jihua, CHEN Baohui, SHI Kaiquan. P-sets and((-overF),F)-data generation-identification[J]. Journal of Shandong University(Natural Science), 2009, 44(11):83-92.
[13] 张环理, 范成贤, 史开泉. P-集合与内P-信息的显性-隐性特征[J]. 山东大学学报(理学版), 2013, 48(10):29-34. ZHANG Huanli, FAN Chengxian, SHI Kaiquan. P-sets and the dominant-recessive characteristics of internal P-information[J]. Journal of Shandong University(Natural Science), 2013, 48(10):29-34.
[14] 张景晓, 徐风生, 史开泉.P-集合与它的动态等价类特征[J]. 计算机科学, 2012, 39(4):246-249. ZHANG Jinxiao, XU Fengsheng, SHI Kaiquan. P-sets and its dynamic equivalence classes characteristics[J]. Computer Science, 2012, 39(4):246-249.
[15] 刘道广, 史开泉. 外-遗传信息与它的外P-推理辨识[J]. 山东大学学报(理学版), 2012, 47(8):81-85. LIU Daoguang, SHI Kaiquan. Outer genetic information and its P-reasoning identification[J]. Journal of Shandong University(Natural Science), 2012, 47(8):81-85.
[16] 史开泉. 函数逆P-集合与信息规律融合[J]. 山东大学学报(理学版), 2012, 47(8):73-80. SHI Kaiquan. Function inverse P-sets and information law fusion[J]. Journal of Shandong University(Natural Science), 2012, 47(8):73-80.
[17] 汤积华, 陈保会, 张凌. 函数逆P-集合与逆P-信息规律动态分离[J]. 山东大学学报(理学版), 2013, 48(8):104-110. TANG Jihua, CHEN Baohui, ZHANG Ling. Function inverse P-sets and the dynamic separation of inverse P-information law[J]. Journal of Shandong University(Natural Science), 2013, 48(8):104-110.
[18] 史开泉. 函数P-集合[J]. 山东大学学报(理学版), 2011, 46(2):62-69. SHI Kaiquan. Function P-sets[J]. Journal of Shandong University(Natural Science), 2011, 46(2):62-69.
[1] REN Xue-fang, ZHANG Ling. Perturbation theorems of inverse P-sets and perturbation-based data mining [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(12): 54-60.
[2] REN Xue-fang, ZHANG Ling, SHI Kai-quan. Surplus-deficiency of cardinal number and inverse P-augmented matrices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 13-18.
[3] ZHANG Yue-yun. Random function inverse P-sets and its characteristics depending on attributes [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 90-94.
[4] TANG Ji-hua1, CHEN Bao-hui1*, ZHANG Ling1, BAI Xing-rui2. Function inverse P-sets and the dynamic separationof  inverse P-sets information laws [J]. J4, 2013, 48(8): 104-110.
[5] SHI Kai-quan. Function inverse packet sets and information law fusion [J]. J4, 2012, 47(8): 73-80.
[6] SHI Kai-quan. Inverse P-sets [J]. J4, 2012, 47(1): 98-103.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!