JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (8): 1-9.doi: 10.6040/j.issn.1671-9352.0.2016.450

    Next Articles

Representation of Choquet integral of the set-valued functions with respect to fuzzy measures and the characteristic of its primitive

GONG Zeng-tai, KOU Xu-yang   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Received:2016-09-23 Online:2017-08-20 Published:2017-08-03

Abstract: The analytic properties of the Choquet integral of set-valued functions with respect to fuzzy measures are discussed, such as the characteristics of the primitive, representation of integral, differentiability of the primitive, and so on. Firstly, based on the previous results, the calculation of Choquet integral of set-valued function is investigated, and a representation theorem of Choquet integral for set-valued function is obtained as a Radon-Nikodym property in some sense. In addition, the characteristics of the primitive of the Choquet integral for set valued functions are given. Finally, the definition of the Choquet integral of set-valued functions with respect to fuzzy measures is improved, and the concepts of the above functions and below function of the set-valued functions are proposed, which achieved the domination of the Choquet integral of set-valued functions with respect to fuzzy measures.

Key words: set-valued functions, fuzzy measure, Choquet integral

CLC Number: 

  • O175.8
[1] CHOQUET G. Theory of capacities[J]. Annales de linstitut Fourier, 1955, 5:131-295.
[2] MUROFUSHI T, SUGENO M. An integral of fuzzy measures and the Choquet integral as integral with respect to a fuzzy measure[J]. Fuzzy Sets and Systems, 1989, 29(2):201-227.
[3] TORRA V, NARUKAWA Y. Numerical integration for the Choquet integral[J]. Information Fusion, 2016, 31(1):137-145.
[4] NARUKAWA Y, TORRA V, SUGENO M. Choquet integral with respect to a symmetric fuzzy measure of a function on the real line[J]. Ann Oper Res, 2016, doi: 10.1007/s10479-012-1166-6.
[5] GRABISCH M, MUROFUSHI T. Fuzzy measures and integrals[M] // Theory and Applications. Heidelberg: Physica-verlag, 2000.
[6] JANG L C, KWON J S. On the represtentation of Choquet of set-valued functions and null set[J]. Fuzzy Sets and Systems, 2000, 112(2):233-239.
[7] SUGENO M. A note on derivatives of functions with respect to fuzzy measures[J]. Fuzzy Sets and Systems, 2013, 222(1):1-17.
[8] ZHANG Deli, WANG Zixiao. On set-valued fuzzy integrals[J]. Fuzzy Sets and Systems, 1993, 56(2):237-241.
[9] JANG L C, KIL B M, KWON J S. Some properties of Choquet integrals of set-valued functions[J]. Fuzzy Sets and Systems, 1997, 91(1):95-98.
[10] HUANG Yan, WU Congxin. Real-valued Choquet integral for set-valued mappings[J]. International Journal of Approximate Reasoning, 2014, 55(2):683-688.
[11] LIAMAZARES B. Constructing Choquet integral-based operators that generalize weighted means and OWA operators[J]. Information Fusion, 2015, 23(1):131-138.
[12] MENG Fanyong, ZHANG Qiang. Induced continuous Choquet integral operators and their application to group decision making[J]. Computers and Industrial Engineering, 2014, 68(1):42-53.
[13] AUMANN R J. Integrals of set-valued functions[J]. Journal of Mathematical Analysis and Applications, 1965, 12(1):1-12.
[14] 巩增泰, 魏朝琦. 集值函数关于非可加集值测度的Choquet积分[J]. 山东大学学报(理学版), 2015, 50(8):63-71. GONG Zengtai, WEI Zhaoqi. Choquet integral of set-valued functions with respect to multisubmeasures[J]. Journal of Shandong University(Natural Science), 2015, 50(8):63-71.
[15] 吴从炘, 马明. 模糊分析学基础[M]. 北京: 国防工业出版社, 1991. WU Congxin, MA Ming. The foundament of fuzzy analysis[M]. Beijing: National Defense Industry Press, 1991.
[16] LI Jun. Order continuity of monotone set function and convergence of measurable functions sequence[J]. Applied Mathematics and Computation, 2003, 135(2-3):211-218.
[17] YAO Ouyang, LI Jun. Some properties of monotone set functions defined by Choquet integral[J]. Journal of Southeast University, 2003, 19(4):424-427.
[1] GONG Zeng-tai, WEI Zhao-qi. Choquet integral of set-valued functions with respect to multisubmeasures [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 62-71.
[2] YANG Ying, JIANG Long*, SUO Xin-li. Choquet integral representation of premium functional and related properties on capacity space [J]. J4, 2013, 48(1): 78-82.
[3] ZHANG Yi-xin, WANG Gui-jun*, ZHOU Li-qun. The Egoroff theorems in set-valued fuzzy measures space [J]. J4, 2010, 45(5): 69-73.
[4] GONG Zeng-tai, XIE Ting. The generalized additivity,transformation  theorem  and  the  defect  of  additivity  for  fuzzy  measures [J]. J4, 2010, 45(10): 53-60.
[5] LI Yanhong. Generalized Egoroff theorems of sequence of fuzzy valued functions [J]. J4, 2009, 44(4): 88-91 .
[6] LI Yan-hong,WANG Gui-jun . Strongly order continuity and pseudo-S-property of generalized fuzzy valued Choquet integrals [J]. J4, 2008, 43(4): 76-80 .
[7] ZHANG Ling ,ZHOU De-qun . Research on the relationships among the λ fuzzy measures, Mbius representation and interaction representation [J]. J4, 2007, 42(7): 33-37 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!