JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (8): 25-34.doi: 10.6040/j.issn.1671-9352.0.2017.040
Previous Articles Next Articles
YU Jin-biao1, REN Yong-qiang2,3, CAO Wei-dong1, LU Tong-chao2, CHENG Ai-jie2, DAI tao1
CLC Number:
[1] JR DOUGLAS J, ROBERTS J E. Numerical methods for a model for compressible miscible displacement in porous media[J]. Mathematics of Computation,1983, 41:441-459. [2] YNGVE Aasum. Effective properties of reservoir simulator grid blocks[D]. Oklahoma: University of Tulsa, 1992. [3] LEE Jaedong. Analytical upscaling of permeabilities for reservoir simulation grid blocks[D]. Oklahoma: University of Tulsa, 1996. [4] 张建松,羊丹平. 多孔介质中可压缩驱动问题的全离散分裂正定混合元方法[J]. 山东大学学报(理学版),2006,41(1):1-10. ZHANG Jiansong, YANG Danping. A fully-discrete splitting positiVe definite mixedelement scheme finite for compressible miscible displacement in porous media[J]. Journal of Shandong University(Natural Science), 2006, 41(1):1-10. [5] CHEN Chunguang. Mixed method for compressible miscible displacement with dispersion in porous media[J]. Numerical Mathematics, 2007, 16(1):74-82. [6] WANG K. An optimal-order estimate for MMOC-MFEM approximations to porous medium flow[J]. Numerical Methods for Partial Differential Equations, 2009, 25:1283-1302. [7] WHEELER M F, YOTOV I. Mixed finite element methods for modeling flow and transport in porous media, Mathematical Modeling of Flow through Porous Media[C] // Bourgeat A, Carasso C, Luckhaus S, et al. London:World Scientific, 1995, 337-358. [8] ARBOGAST T, WHEELER M F, YOTOV I. Mixed finite elements for elliptic problems with tensor coefficients as cell-centered finite difference[J]. SIAM Journal of Numerical Analysis, 1997, 41:828-852. [9] CHEN Z. Expanded mixed finite element methods for linear second order elliptic problems 1[J]. RAIRO Model Meth Anal Numer, 1998, 32:478-499. [10] CHEN Z. Expanded mixed finite element methods for quasilinear second order elliptic problems 2[J]. RAIRO Model Meth Anal Numer, 1998, 32:500-520. [11] RUI Hongxing, LU Tongchao. An expanded mixed covolume method for elliptic problems[J]. Numerical Methods for Partial Differential Equations, 2005, 21:8-23. [12] WOODWARD C S, DAWSON N D. Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media[J]. SIAM Journal of Numerical Analysis, 2000, 37:701-724. [13] CHEN Huanzhen, WANG Hong. An optimal-order error estimate on an H1-Galerkin mixed method for a nonlinear parabolic equation in porous medium flow[J]. Numerical Methods for Partial Differential Equations, 2010, 26:188-205. [14] ZHOU Zhaojie, WANG Weiwei, CHEN Huanzhen. An H1-Galerkin expanded mixed finite element approximation of second-order nonlinear hyperbolic equations[J]. Abstract and Applied Analysis, 2013, 4:1-12. [15] SONG Huailing, JIANG Lijian, CHEN Gaojie. Convergence analysis of hybrid expanded mixed finite element method for elliptic equations[J]. Computers & Mathematics with Application, 2014, 68:1205-1219. [16] SONG Huailing, YUAN Yirang. The expanded upwind-mixed multi-step method for the miscible displacement problem in three dimensions[J]. Applied Mathematics and Computation, 2008, 195:100-109. [17] SONG Huailing, YUAN Yirang, LIU Gongjie. The expanded upwind-mixed method on changing meshes for positive semi-definite problem of two-phase miscible flow[J]. International Journal of Computer Mathematics, 2008,85:1113-1125. [18] CHEN Yanping, CHEN Luoping, ZHANG Xiaochun. Two-Grid method for nonlinear parabolic equations by expanded mixed finite element methods[J]. Numerical Methods for Partial Differential Equations, 2013, 29:1238-1256. [19] CHEN Yanping, LIU Huanwen, LIU Shang. Analysis of two-grid methods for reaction-diffusion equations by expanded mixed finite element methods[J]. International Journal for numerical methods in Engineering, 2007, 69:408-422. [20] RUSSELL T F, WHEELER M F. Finite element and finite difference methods for continuous flows in porous media[M]. Philadephia: Society for Industrial and Applied Mathematics, 1983: 35-106. |
|