JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2017, Vol. 52 ›› Issue (8): 53-57.doi: 10.6040/j.issn.1671-9352.0.2016.576
Previous Articles Next Articles
LIANG Xiao-lin, GUO Min, LI Jing
CLC Number:
[1] LAM Y. Geometric processes and replacement problem[J]. Acta Mathematicae Applicatae Sinica, 1988, 4(4):366-377. [2] LAM Y, CHAN S K. Statistical inference for geometric processes with lognormal distribution[J]. Computational Statistics & Data Analysis, 1998, 27(1):99-112. [3] LAM Y. Nonparametric inference for geometric processes[J]. Communication in Statistics-Theory and Methods, 2007, 21(7):2083-2105. [4] 梁小林, 牛彩云, 田学. 更新几何过程及相关性质[J]. 应用概率统计,2015, 31(4):384-394. LIANG Xiaolin, NIU Caiyun, TIAN Xue.The renewal-geometric process and its properties[J]. Application of Probability and Statistics, 2015, 31(4):384-394. [5] NIU Caiyun, LIANG Xiaolin, GE Bingfeng, et al. Optimal replacement policy for a repairable system with deterioration based on a renewal-geometric process[J]. Annals of Operations Research, 2016, 244(1):49-66. [6] 牛彩云. 更新几何过程及几类维修策略问题的研究[D]. 长沙:长沙理工大学, 2014. NIU Caiyun. The researches in renewal-geometric process and maintenance policies problems[D]. Changsha: Changsha University of Science and Technology, 2014. [7] VEXLER A,GUREVICH G. Entropy-based empirical likelihood ratio change point detection policies[C] // JSM Proceedings Section on Nonparametric Statistics. Alexandria VA: American Statistical Association, 2009: 3986-3998. [8] ROBINS J, ROTNITZKY A. A semiparametric changepoint model[J]. Biometrika,2004, 91:849-862. [9] BARRY D, HARTIGAN JA. A bayesian analysis for change point problems[J]. Journal of the American Statistical Association, 1993, 88(421):309-319. [10] WANG Zhanfeng, WU Yaohua, ZHAO Lincheng. Change-point estimation for censored regression model[J]. Science in China Series A: Mathematics, 2007, 50:63-72. [11] SRIVASTAVA M S, WORSLEY K J. Likelihood ratio tests for a change in the multivariate normal mean[J]. Journal of the American Statistical Association, 1986, 81(393):199-204. [12] BAI J. Least squares estimation of a shift in linear processes[J]. Journal of Time Series Analysis, 1994, 15:453-472. [13] CELISSE A. Model selection via cross-validation in density estimation, regression, and change-points detection[D]. Paris: University Paris, 2008: 48-68. |
[1] | YANG Wei-qiang and YANG Li . Nonparametric estimation and simulation of backward stochastic differential equation [J]. J4, 2006, 41(2): 34-38 . |
|