JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (6): 44-52.doi: 10.6040/j.issn.1671-9352.0.2017.507

Previous Articles     Next Articles

O-convexity of Orlicz-Bochner spaces with the Luxemburg norm

  

  1. College of Mathematics and Computer Science, Anhui Normal University, Wuhu 241000, Anhui, China
  • Received:2017-09-27 Online:2018-06-20 Published:2018-06-13

Abstract: Some characterizations of O-convexity in Banach space are given. Using these characterizations, the criteria is obtained for O-convex of Orlicz-Bochner spaces endowed with the Luxemburg norm.

Key words: Orlicz-Bochner function space, Orlicz-Bochner sequence space, Luxemburg norm, O-convexity

CLC Number: 

  • O177.2
[1] MAZCUNAN-NAVARRO E. Geometria de los Espacios de Banach en Teoria Metrica del Punto Fijo[D]. Doctoral Dissertation University of Valencia, 2003.
[2] KOTTMAN C. Packing and reflexivity in Banach spaces[J]. Transactions of the American Mathematical Society, 1970, 150(2):565-576.
[3] SAEJUNG S. Convexity conditions and normal structure of Banach spaces[J]. Journal of Mathematical Analysis and Applications, 2008, 344(2):851-856.
[4] NAIDU S, SASTRY K. Convexity condition in normed liner spaces[J]. Journal fur die Reine und Angewandte Mathematik, 1978, 1978(297):35-53.
[5] FETTER NATHANSKY H, LIORENS-FUSTER E. Comparison of P-convexity, O-convexity and other geometrical properties[J]. Journal of Mathematical Analysis and Applications, 2012, 396(2):749-758.
[6] KOLWICZ P. A note on P-convex Orlicz function spaces[J]. Commentationes Mathematicae Prace Matematyczne, 1995, 35(2):163-170.
[7] KOLWICZ P. P-convexity of Musielak-Orlicz sequence spaces of Bochner type[J]. Collectanea Mathematica, 1997, 48(4):587-600.
[8] KOLWICZ P, PLUCIENNIK R. On P-convex Musielak-Orlicz spaces[J]. Commentationes Mathematicae Universitatis Carolinae, 1995, 36(4):655-672.
[9] KOLWICZ P, PLUCIENNIK R. P-convexity of Orlicz-Bochner spaces[J]. Proceedings of the American Mathematical Society, 1998, 126(8):2315-2322.
[10] SHANG Shaoqiang, CUI Yunan, FU Yongqiang. P-convexity of Orlicz-Bochner function spaces endowed with the Orlicz norm[J]. Nonlinear Analysis, 2012, 75(1):371-379.
[11] YE Yining, HE Miaohong, PLUCIENNK R. P-convexity and reflexivity of Orlicz spaces[J]. Commentationes Mathematicae. Prace Matematyczne, 1991, 31(2):203-216.
[12] YE Yining, HUANG Yafeng. P-convexity property in Musielak-Orlicz sequence spaces[J]. Collectanea Mathematica, 1993, 44(1-3):307-326.
[13] CHEN Shutao. Geometry of Orlicz spaces[M]. Warszawa: Dissertationes Mathematicae Warszawa, 1996.
[14] SHANG Shaoqiang, CUI Yunan. Approximative compactness and Asplund property in Banach function spaces and in Orlicz-Bochner spaces in particular with application[J]. Journal of Mathematical Analysis and Applications, 2015, 421(2):1377-1395.
[15] GIESY D. On a convexity condition in normed liner spaces[J]. Transactions of the American Mathematical Society, 1966, 125(1):114-146.
[16] JAMES R. Uniformly non-square Banach spaces[J]. Annals of Mathematics, 1964, 80(3):542-550.
[17] JAMES R. A nonreflexive Banach space that is uniformly nonoctathedral[J]. Israel Journal of Mathematics, 1974, 18(2):145-155.
[18] MILMAN D. On some criteria for the regularity of spaces of type(B)[J]. Doklady Akademii Nauk SSSR, 1938, 20(2):243-246.
[19] WANG Tingfu, SHI Zhongrui. On the uniformly normal structure of orlicz spaces with Orlicz norm[J]. Commentationes Mathematicae Universitatis Carolinae, 1993, 34(3):433-442.
[1] ZHANG Ying, CAO Xiao-hong, DAI Lei. Judgement of Weyls theorem for bounded linear operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 82-87.
[2] HUANG Lei-lei, SONG Xiao-qiu, LU Wei. On polynomial stability of linear discrete-time systems in Banach spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 36-41.
[3] KONG Ying-ying, CAO Xiao-hong, DAI Lei. Judgement of a-Weyls theorem and its perturbations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 77-83.
[4] SONG Jia-jia, CAO Xiao-hong, DAI Lei. The judgement for the small compact perturbation of SVEP for upper triangular operator matrices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 61-67.
[5] LIU Xiao-wei. Linear extension of isometries between the unit spheres of two-dimensional normed spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 44-48.
[6] DAI Lei, CAO Xiao-hong. Property(z)and Weyl type theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 60-65.
[7] DONG Jiong, CAO Xiao-hong. Weyls theorem for the cube of operator and compact perturbations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 15-21.
[8] WU Xue-li, CAO Xiao-hong, ZHANG Min. The perturbation of the single valued extension property for bounded linear operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 5-9.
[9] MA Fei, ZHANG Jian-hua, HE Wen. Generalized Jordan centralizers on CDC-algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 83-88.
[10] CUI Miao-miao, WANG Bi-yu, CAO Xiao-hong. A note on operator matrixs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 56-61.
[11] LIU Yang. Some equivalent conditions of supercyclicity of bounded linear operators [J]. J4, 2013, 48(12): 75-79.
[12] LI Zhi-gang, SONG Xiao-qiu*, YUE Tian. On nonuniform polynomial trichotomy of 
evolution operators in Banach space
[J]. J4, 2013, 48(12): 80-85.
[13] CHEN Shi-zhao, CAO Xiao-hong*. Linear maps between operator algebras preserving the ascent and descent [J]. J4, 2013, 48(12): 86-89.
[14] XIE Zhong-Zhou, LIU Xiao-Ji. General solutions to two pairs of quaternion matrix equations [J]. J4, 2008, 43(12): 40-47.
[15] CAO Xiao-hong . The single valued extension property on a Banach space [J]. J4, 2006, 41(1): 92-96 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!