JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2018, Vol. 53 ›› Issue (6): 44-52.doi: 10.6040/j.issn.1671-9352.0.2017.507
Previous Articles Next Articles
CLC Number:
[1] MAZCUNAN-NAVARRO E. Geometria de los Espacios de Banach en Teoria Metrica del Punto Fijo[D]. Doctoral Dissertation University of Valencia, 2003. [2] KOTTMAN C. Packing and reflexivity in Banach spaces[J]. Transactions of the American Mathematical Society, 1970, 150(2):565-576. [3] SAEJUNG S. Convexity conditions and normal structure of Banach spaces[J]. Journal of Mathematical Analysis and Applications, 2008, 344(2):851-856. [4] NAIDU S, SASTRY K. Convexity condition in normed liner spaces[J]. Journal fur die Reine und Angewandte Mathematik, 1978, 1978(297):35-53. [5] FETTER NATHANSKY H, LIORENS-FUSTER E. Comparison of P-convexity, O-convexity and other geometrical properties[J]. Journal of Mathematical Analysis and Applications, 2012, 396(2):749-758. [6] KOLWICZ P. A note on P-convex Orlicz function spaces[J]. Commentationes Mathematicae Prace Matematyczne, 1995, 35(2):163-170. [7] KOLWICZ P. P-convexity of Musielak-Orlicz sequence spaces of Bochner type[J]. Collectanea Mathematica, 1997, 48(4):587-600. [8] KOLWICZ P, PLUCIENNIK R. On P-convex Musielak-Orlicz spaces[J]. Commentationes Mathematicae Universitatis Carolinae, 1995, 36(4):655-672. [9] KOLWICZ P, PLUCIENNIK R. P-convexity of Orlicz-Bochner spaces[J]. Proceedings of the American Mathematical Society, 1998, 126(8):2315-2322. [10] SHANG Shaoqiang, CUI Yunan, FU Yongqiang. P-convexity of Orlicz-Bochner function spaces endowed with the Orlicz norm[J]. Nonlinear Analysis, 2012, 75(1):371-379. [11] YE Yining, HE Miaohong, PLUCIENNK R. P-convexity and reflexivity of Orlicz spaces[J]. Commentationes Mathematicae. Prace Matematyczne, 1991, 31(2):203-216. [12] YE Yining, HUANG Yafeng. P-convexity property in Musielak-Orlicz sequence spaces[J]. Collectanea Mathematica, 1993, 44(1-3):307-326. [13] CHEN Shutao. Geometry of Orlicz spaces[M]. Warszawa: Dissertationes Mathematicae Warszawa, 1996. [14] SHANG Shaoqiang, CUI Yunan. Approximative compactness and Asplund property in Banach function spaces and in Orlicz-Bochner spaces in particular with application[J]. Journal of Mathematical Analysis and Applications, 2015, 421(2):1377-1395. [15] GIESY D. On a convexity condition in normed liner spaces[J]. Transactions of the American Mathematical Society, 1966, 125(1):114-146. [16] JAMES R. Uniformly non-square Banach spaces[J]. Annals of Mathematics, 1964, 80(3):542-550. [17] JAMES R. A nonreflexive Banach space that is uniformly nonoctathedral[J]. Israel Journal of Mathematics, 1974, 18(2):145-155. [18] MILMAN D. On some criteria for the regularity of spaces of type(B)[J]. Doklady Akademii Nauk SSSR, 1938, 20(2):243-246. [19] WANG Tingfu, SHI Zhongrui. On the uniformly normal structure of orlicz spaces with Orlicz norm[J]. Commentationes Mathematicae Universitatis Carolinae, 1993, 34(3):433-442. |
[1] | ZHANG Ying, CAO Xiao-hong, DAI Lei. Judgement of Weyls theorem for bounded linear operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(10): 82-87. |
[2] | HUANG Lei-lei, SONG Xiao-qiu, LU Wei. On polynomial stability of linear discrete-time systems in Banach spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 36-41. |
[3] | KONG Ying-ying, CAO Xiao-hong, DAI Lei. Judgement of a-Weyls theorem and its perturbations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 77-83. |
[4] | SONG Jia-jia, CAO Xiao-hong, DAI Lei. The judgement for the small compact perturbation of SVEP for upper triangular operator matrices [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(4): 61-67. |
[5] | LIU Xiao-wei. Linear extension of isometries between the unit spheres of two-dimensional normed spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 44-48. |
[6] | DAI Lei, CAO Xiao-hong. Property(z)and Weyl type theorem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 60-65. |
[7] | DONG Jiong, CAO Xiao-hong. Weyls theorem for the cube of operator and compact perturbations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(8): 15-21. |
[8] | WU Xue-li, CAO Xiao-hong, ZHANG Min. The perturbation of the single valued extension property for bounded linear operators [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(12): 5-9. |
[9] | MA Fei, ZHANG Jian-hua, HE Wen. Generalized Jordan centralizers on CDC-algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 83-88. |
[10] | CUI Miao-miao, WANG Bi-yu, CAO Xiao-hong. A note on operator matrixs [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(10): 56-61. |
[11] | LIU Yang. Some equivalent conditions of supercyclicity of bounded linear operators [J]. J4, 2013, 48(12): 75-79. |
[12] |
LI Zhi-gang, SONG Xiao-qiu*, YUE Tian.
On nonuniform polynomial trichotomy of evolution operators in Banach space [J]. J4, 2013, 48(12): 80-85. |
[13] | CHEN Shi-zhao, CAO Xiao-hong*. Linear maps between operator algebras preserving the ascent and descent [J]. J4, 2013, 48(12): 86-89. |
[14] | XIE Zhong-Zhou, LIU Xiao-Ji. General solutions to two pairs of quaternion matrix equations [J]. J4, 2008, 43(12): 40-47. |
[15] | CAO Xiao-hong . The single valued extension property on a Banach space [J]. J4, 2006, 41(1): 92-96 . |
|