JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (6): 2-7.doi: 10.6040/j.issn.1671-9352.0.2019.172
LIU Zu-hua1,2, GUO Yu-qi1*
CLC Number:
[1] ZHANG D, GUO Y Q, SHUM K P. On some decompositions of r-disjunctive languages[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2014, 37(3):727-746. [2] GUO Y Q, REIS C M, THIERRIN G. Relatively f-disjunctive languages[J]. Semigroup Forum, 1988, 37:289-299. [3] LIU Y, SHUM K P, GUO Y Q. Relatively regular languages and thin codes[J]. European Journal of Combinatorics, 2008, 29:261-267. [4] GUO Y Q, SHYR H J, THIERRIN G. F-disjunctive languages[J]. International Journal of Computer Mathematics, 1986, 18:219-237. [5] ITO M. Dense and disjunctive properties of languages[C] // Fundamentals of Computation Theory, International Symposium, Fct '93. Szeged: Springer, 1993: 31-49. [6] REIS C M. A note on F-disjunctive languages[J]. Semigroup Forum, 1987, 36:159-165. [7] REIS C M. F-disjunctive congruences and a generalization of monoids with length[J]. Semigroup Forum, 1990, 41:291-306. [8] SHYR H J, THIERRIN G. Disjunctive Languages and codes, fundamentals of computation theory[C] // Proceeding of the 1977 Inter FCT-Conference, Lecture Notes in Computer Science, No 56. Poznan: Springer-Verlag, 1977: 171-176. [9] ZHANG D, GUO Y Q, SHUM K P. Some results in r-disjunctive languages and related topics[J]. Soft Computing, 2017, 21(10):2477-2483. [10] HOWIE J M. Automata and languages[M]. Oxford: Clarendon Press, 1991. [11] BERSTEL J, PERRIN D. Theory of codes[M]. Orlando: Academic Press, 1985. |
[1] | SONG Xian-mei, XIONG Lei. MacWilliams identity and self-dual codes of linear codes over Z2a+uZ2a [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 72-78. |
[2] | LIU Xiu-sheng, LIU Hua-lu. MacWilliams identities of the linear codes over ring Fp+vFp [J]. J4, 2013, 48(12): 61-65. |
|