JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2019, Vol. 54 ›› Issue (9): 36-42.doi: 10.6040/j.issn.1671-9352.0.2018.560
Previous Articles Next Articles
ZHANG Ting-hai, QIN Feng
CLC Number:
[1] BACZYNSKI M, JAYARAM B. Fuzzy implications[M]. Berlin: Springer, 2008. [2] 杨丽,覃锋.构造模糊蕴涵的新序和方法[J].江西师范大学学报(自然科学版),2018,42(3):254-259. YANG Li, QIN Feng. The novel method of constructing fuzzy implications by ordinal sum[J]. Journal of Jiangxi Normal University(Natural Science), 2018, 42(3):254-259. [3] BACZYNSKI M, JAYARAM B.(S,N)-and R-implications: a state-of-the-art survey[J]. Fuzzy Sets and Systems, 2008, 159(14):1836-1859. [4] BACZYNSKI M, JAYARAM B. On the characterization of (S,N)-implications[J]. Fuzzy Sets and Systems, 2007, 158:1713-1727. [5] FODOR J C. Contrapositive symmetry of fuzzy implications[J]. Fuzzy Sets and Systems, 1995, 69(2):141-156. [6] JAYARAM B. On the law of importation (x∧y)→z≡x→(y→z) in fuzzy logic[J]. IEEE Transactions on Fuzzy Systems, 2008,16(1):130-144. [7] MAS M, MONSERRAT M, TORRENS J. QL-implications versus D-implications[J]. Kybernetika, 2006, 42(3):351-366. [8] DE BAETS B. Idempotent uninorms[J]. European Journal of Operational Research, 1999, 118(3):631-642. [9] DIMURO G P, BEDREGAL B. On residual implications derived from overlap functions[J]. Information Sciences, 2015, 312:78-88. [10] DIMURO G P, BEDREGAL B, SANTIAGO R H N. On(G,N)-implications derived from grouping functions[J]. Information Sciences, 2014, 379:1-17. [11] BALASUBRAMANIAM J, RAO C J M. On the distributivity of implication operators over T and S norms[J]. IEEE Transactions on Fuzzy Systems, 2004, 12(2):194-198. [12] RUIZ-AGUILERA D, TORRENS J. Distributivity of strong implications over conjunctive and disjunctive uninorms[J]. Kybernetika, 2006, 42(3):319-336. [13] RUIZ-AGUILERa D, TORRENS J. Distributivity of residual implications over conjunctive and disjunctive uninorms[J]. Fuzzy Sets and Systems, 2007, 158(1):23-37. [14] QIN F, YANG L. Distributive equations of implications based on nilpotent triangular norms[J]. International Journal of Approximate Reasoning, 2010, 51(8):984-992. [15] QIN F, BACZYNSKI M, XIE A F. Distributive equations of implications based on continuous triangular norms(I)[J]. IEEE Transactions on Fuzzy Systems, 2012, 20(1):153-167. [16] QIN F, YANG P C. On the distributive equations of implications based on a continuous t-norms and a continuous Archimedean t-conorm[C] // International Conference on Biomedical Engineering and Informatics. USA: IEEE, 2011: 2290-2294. [17] QIN F, BACZYNSKI M. Distributive Equations of implications based on continuous triangular conorms(II)[J]. Fuzzy Sets and Systems, 2014, 240:86-102. [18] QIAO J S, HU B Q. The distributive laws of fuzzy implications over overlap and grouping functions[J]. Information Sciences, 2018, 438:107-126. [19] BUSTINCE H, PAGOLA M, MESIAR R, et al. Grouping, overlaps and generalized bientropic functions for fuzzy modeling of pairwise comparisons[J]. IEEE Transactions on Fuzzy Systems, 2012, 20:405-415. [20] DIMURO G P, BEDREGAL B, BUSTINCE H, et al. On additive generators of overlap functions[J]. Fuzzy Sets and Systems, 2016, 287:76-96. [21] DIMURO G P, BEDREGAL B, BUSTINCE H, et al. On additive generators of grouping functions[M] // LAURENT A, STRAUSS O, BOUCHON-MEUNIER B, et al. Information Processing and Management of Uncertainty in Knowledge-Based Information Science. Berlin: Springer, 2014, 444:252-261. |
[1] | CHENG Ya-fei, ZHAO Bin. Characterization of fuzzy implications satisfying the law of importation with respect to conjunctive 2-uninorms [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 20-32. |
[2] | LIU Xiao, ZHOU Hong-jun. (O,N)-implication and its characterizations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(5): 99-111. |
[3] | YU Jun-hong, ZHOU Hong-jun. (T,N)-implication and its basic properties [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 71-81. |
[4] | HAN Liang, LIU Hua-wen. On the solutions of the distributive equations of #br# logic operators on a finite chain [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 29-35. |
[5] | LIU Chun-hui1,2. Theory of filters in Fuzzy implication algebras [J]. J4, 2013, 48(09): 73-77. |
[6] | LI Ling-ling, WU Hong-bo*. BR0-distributivity and its generalization [J]. J4, 2012, 47(2): 93-97. |
|