JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (2): 104-108.doi: 10.6040/j.issn.1671-9352.0.2019.068

Previous Articles    

Principal congruences on modal algebras

CAO Fa-sheng, XIAO Fang   

  1. Department of Cognitive Science, Guizhou Minzu University, Guiyang 550025, Guizhou, China
  • Published:2020-02-14

Abstract: The principal congruences of Boolean algebras and modal algebras are studied. In strict accordance with the definitions of principal congruences of Boolean algebras and modal algebras, the characterization of principal congruences of Boolean algebras and modal algebras are given.

Key words: principal congruence, principal congruence formula, Boolean algebra, modal algebra

CLC Number: 

  • O153.5
[1] BURRIS S, SANKAPPANAVAR H P. A course in universal algebra[M]. New York: Springer Verlag, 1981.
[2] GRATZER George. Universal algebra[M]. New York: Springer Verlag, 1979.
[3] BLYTH T, VARLET J. Principal congruences on some lattice-ordered algebras[J]. Discrete Mathematics, 1990, 81(3):323-329.
[4] CELANI S A. Modal Tarski algebras[J]. Reports on Mathematical Logic, 2005, 39:113-126.
[5] FANG Jie, SUN Zhongju. Principal congruences on S1-algebras[J]. Algebra Colloq, 2013, 20(3):427-434.
[6] JANSANA R, SAN MARTÍN H J. On principal congruences in distributive lattices with a commutative monoidal operation and an implication[J]. Studia Logica, 2019, 107(2):351-374.
[7] LAKSTER H. Principal congruences of pseudocomplemented distributive lattices[J]. Proceedings of the American Mathematical Society, 1973, 37(1):32-36.
[8] PALMA C, SANTOS R. Principal congruences on semi-de Morgan algebras[J]. Studia Logica, 2001, 67(1):75-88.
[9] SAN MARTÍN H J. Principal congruences in weak Heyting algebras[J]. Algebra Universalis, 2016, 75(4):405-418.
[10] SAN MARTÍN H J. On congruences in weak implicative semi-lattices[J]. Soft Computing, 2017, 21(12):3167-3176.
[11] SANKAPPANAVR H P. Principal congruences on psdudocomplemented on Morgan algebras[J]. Proc Amer Math Soc, 1987(33):3-11.
[12] SANKAPPANAVR, H P, DE CARVALHO Júlia Vaz. Congruence properties of pseudocomplemented de Morgan algebras[J]. Mathematical Logic Quarterly, 2014, 60(6):425-436.
[13] SANKAPPANAVR, H P. Principal congruences of double demi-p-lattices[J]. Algebra Universalis, 1990, 27(2):248-253.
[14] LUO C W. A special kind of principal congruences on MS-algebras[J]. Acta Mathematica Scientia, 2008, 28(2):315-320.
[15] 宋振明, 徐杨. 格蕴涵代数上的同余关系[J]. 应用数学, 1997, 10(3):121-124. SONG Zhenming, XU Yang. Congruence relations on lattice implication algebras[J]. Mathematica Applicata, 1997, 10(3):121-124.
[16] 曹发生, 王驹, 蒋运承. 格L的元与主同余的关系[J]. 西南大学学报(自然科学版), 2009, 31(12):87-91. CAO Fasheng, WANG Ju, JIANG Yuncheng. The relationship of element of lattice L and principal congruence on it[J]. Journal of Southwest University(Natural Science Edition), 2009, 31(12):87-91.
[17] 曹发生, 王驹, 蒋运承. 有单位元的环的主同余[J]. 江西师范大学学报(自然科学版), 2010, 34(2):192-194, 214. CAO Fasheng. Principal congruence on ring with identity[J]. Journal of Jiangxi Normal University(Natural Sciences Edition), 2010, 34(2):192-194, 214.
[18] 曹发生. 布尔格的主同余[J].四川师范大学学报(自然科学版),2012,35(2):236-239. CAO Fasheng. Principal congruence on boolean lattices[J]. Journal of Sichuan Normal University(Natural Science Edition), 2012, 35(2):236-239.
[19] 曹发生. Hamilton群的主同余[J].数学的实践与认识, 2013, 43(15):255-258. CAO Fasheng. Principal congruence on Hamilton groups[J]. Mathematics in Practice and Theory, 2013, 43(15):255-258.
[20] 叶林, 曹发生. 格的标准元和分配元的主同余[J]. 山东大学学报(理学版), 2010, 45(11):63-66, 72. YE Lin, CAO Fasheng. Principal congruence on the standard and distributive elements of a lattice[J]. Journal of Shandong University, 2010, 45(11):63-66, 72.
[1] LIU Li-jun. Characterizations and properties of triple-δ-derivation in Boolean algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(11): 95-99.
[2] LIU Wei-feng. Soft quotient Boolean algebra of Boolean algebra [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(08): 57-61.
[3] LIU Wei-feng, DU Ying-xue, XU Hong-wei. Interval soft Boolean algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 104-110.
[4] FENG Min1, XIN Xiao-long1*, LI Yi-jun1,2. On f derivations and g derivations of MV-algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 50-56.
[5] LIU Wei-feng. Soft Boolean algebra [J]. J4, 2013, 48(8): 56-62.
[6] LIU Chun-hui1,2. Interval valued (∈,∈∨ q)fuzzy subalgebras of Boolean algebras [J]. J4, 2013, 48(10): 94-98.
[7] YE Lin1, CAO Fa-sheng2. Principal congruence on the standard and distributive elements of a lattice [J]. J4, 2010, 45(11): 63-66.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!