JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (9): 10-18.doi: 10.6040/j.issn.1671-9352.0.2019.795
WANG Hong-mei, AN Xin-lei*, QIAO Shuai, ZHANG Wei
CLC Number:
[1] STEINMETZ P N, ROY A, FITZGERALD P J. Attention modulates synchronized neuronal firing in primate somatosensorycortex[J]. Nature, 2000, 404(6774):187-190. [2] BENNETT M V, ZUKIN R S. Electrical coupling and neuronal synchronization in the mammalian brain[J]. Neuron, 2004, 41(4):495-511. [3] NGUYEN L H, HONG K S. Adaptive synchronization of two coupled chaotic Hindmarsh-Rose neurons by controlling the membrane potential of a slave neuron[J]. Applied Mathematical Modelling, 2013, 37(4):2460-2468. [4] 邬开俊, 王春丽, 单亚州. 噪声作用下的化学突触耦合神经元系统的同步[J]. 吉林大学学报(工学版), 2017(5):231-237. WU Kaijun, WANG Chunli, SHAN Yazhou. Synchronization of chemical synaptic coupling neuron system under noise[J]. Journal of Jilin University(Engineering Edition), 2017(5):231-237. [5] 王天. 耦合神经元系统的放电机理及同步研究[D].兰州:兰州交通大学,2017. WANG Tian. Study on discharge mechanism and synchronization of coupled neuron system[D]. Lanzhou: Lanzhou Jiaotong University, 2017. [6] BAPTISTA M S, GREBOGI C. Combined effect of chemical and electrical synapses in Hindmarsh-Rose neural networks on synchronization and the rate of information[J]. Physical Review E, 2010, 82(3):036203. [7] SELVERSTON A I, RABINOVICH M I, ABARBANEL H D. Reliable circuits from irregular neurons: a dynamical approach to understanding central pattern generators[J]. Journal of Physiology Paris, 2000, 94(5):357-374. [8] 邬开俊.Hindmarsh-Rose神经元模型的双参数分岔特性及耦合同步研究[D]. 兰州:兰州交通大学,2017. WU Kaijun. Bifurcation characteristics and coupling synchronization of Hindmarsh-Rose neuron model[D]. Lanzhou: Lanzhou Jiaotong University, 2017. [9] HETTIARACHCHI I T, LAKSHMANAN S, BHATTI A. Chaotic synchronization of time-delay coupled Hindmarsh-Rose neurons via nonlinear control[J]. Nonlinear Dynamics, 2016, 86(2):1249-1262. [10] WANG Xingyuan, REN Xiaoli, ZHANG Yonglei. Full-order and reduced-order optimal synchronization of neurons model with unknown parameters[J]. Acta Physica Sinica, 2012, 61(6):88-94. [11] ZHANG Qunjiao, LU Junan. Adaptive feedback synchronization of a general complex dynamical network with delayed nodes[J]. International Journal of Distributed Sensor Networks, 2013, 44(4):996-1003. [12] WU Kaijun, WANG Tiejun, WANG Chunli. Study on electrical synapse coupling synchronization of Hindmarsh-Rose neurons under Gaussian white noise[J]. Neural Computing & Applications, 2018, 30(2):551-561. [13] MOUJAHID A, D'ANJOU A, TORREALDEA F J, et al. Efficient synchronization of structurally adaptive coupled Hindmarsh-Rose neurons[J]. Chaos, Solitons & Fractals, 2011, 44(11):929-933. [14] RECH P C. Dynamics in the parameter space of a neuron model[J]. Chinese Physics Letters, 2012, 29(6):060506. [15] RECH P C. Dynamics of a neuron model in different two-dimensional parameter-spaces[J]. Physics Letters A, 2011, 375(12):1461-1464. [16] 单亚州.ML神经元耦合模型的同步研究与应用[D].兰州:兰州交通大学,2016. SHAN Yazhou. Synchronization research and application of ML neuron coupling model[D]. Lanzhou: Lanzhou Jiaotong University, 2016. [17] XU Ying, JIA Ya, MA Jun. Synchronization between neurons coupled by memristor[J]. Chaos, Solitons & Fractals, 2017, 104:435-442. |
[1] | MU Na-na, AN Xin-lei, XU Hao-nan. Hidden attractor with two memristors and Hamilton energy control [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(9): 91-97. |
[2] | WANG Chang-hong, WANG Lin-shan. Mean square exponential stability of memristor-based stochastic neural networks with S-type distributed delays [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(5): 130-135. |
|