JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (9): 72-80.doi: 10.6040/j.issn.1671-9352.0.2020.202

•   • Previous Articles     Next Articles

Low-light image enhancement algorithm based on variational structure

Ming-xing LIN2,*()   

  1. 1. Techanical and Electrical Engineering Department, Shandong Transport Vocational College, Weifang 261206, Shandong, China
    2. School of Mechanical Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2020-05-08 Online:2020-09-20 Published:2020-09-17
  • Contact: Ming-xing LIN E-mail:mxLin@sdu.edu.cn

Abstract:

Aiming at the problem that the images captured under low illumination present some defects, such as low brightness and poor visibility, a low-light image enhancement algorithm based on variational structure guided filtering is proposed. First, the maximum of R, G and B channels are searched at each pixel of the input image, and the bright channel map is obtained by using the maximum filtering. Secondly, a novel guided filtering based on variational model is constructed to refine the bright channel image to estimate the illumination component. Subsequently, the reflection component is obtained by removing the illumination component according to the Retinex model. Finally, homomorphic filtering and linear stretching are employed to further improve the contrast of the reflection component to output an enhanced image with clear visibility. Comprehensive experimental results show that this algorithm can effectively and quickly enhance the illumination and contrast of low-light images and retain details.

Key words: low-light image, Retinex, variational model, guided filtering, homomorphic filtering

CLC Number: 

  • TP391.41

Fig.1

Retinex model"

Fig.2

Flow chart of the proposed algorithm"

Fig.3

Halo effect"

Fig.4

Estimated illumination"

Fig.5

Comparison of low-light images processed by four enhancement algorithms"

Fig.6

Enlarged local patches enhanced by four enhancement algorithms"

Table 1

Comparison of different algorithms in terms of evaluation index"

测试图像 评价指标 原图 MSRCR算法 ALSM算法 NPEA算法 本文算法
图a 对比度 509.95 513.34 466.77 616.71 531.88
信息熵 3.58 4.45 5.06 4.93 5.22
LOE 266.40 396.55 214.57 188.79
运行时间(s) 1.01 28.85 28.59 1.53
图b 对比度 210.25 217.46 696.55 1 057.02 440.52
信息熵 4.02 3.89 4.66 5.17 4.81
LOE 194.76 294.01 679.54 232.50
运行时间(s) 1.28 55.74 58.87 2.76
图c 对比度 8.79 337.74 79.97 384.38 446.81
信息熵 1.03 2.79 1.14 1.91 3.26
LOE 354.97 256.44 301.35 305.08
运行时间(s) 1.30 32.59 46.47 1.83
图d 对比度 45.75 1 530.11 1 300.21 1 242.26 2 267.35
信息熵 3.02 5.53 5.39 5.76 6.27
LOE 184.42 207.60 467.38 129.01
运行时间(s) 1.07 16.97 21.14 1.09
图e 对比度 121.87 122.05 227.60 342.48 346.26
信息熵 2.88 3.08 4.21 3.78 4.09
LOE 333.30 256.60 283.84 287.54
运行时间(s) 4.52 178.43 133.72 11.01
图f 对比度 166.80 327.72 439.99 334.66 441.50
信息熵 3.92 3.49 3.55 3.35 3.78
LOE 1 796.78 389.27 703.72 291.33
运行时间(s) 1.95 91.84 55.95 4.33
图g 对比度 385.02 427.07 2 120.26 700.07 882.83
信息熵 4.35 4.62 5.62 5.22 5.37
LOE 1 622.83 238.81 271.75 257.89
运行时间(s) 1.23 40.07 31.89 1.87
图h 对比度 361.12 346.66 523.40 471.64 553.95
信息熵 4.42 4.67 5.25 5.00 5.18
LOE 168.73 364.20 345.64 192.04
运行时间(s) 1.16 16.15 24.08 1.19
平均值 对比度 226.19 477.77 731.84 643.65 737.89
信息熵 3.40 4.07 4.36 4.39 4.75
LOE 615.27 300.43 408.47 235.52
运行时间(s) 1.69 57.58 50.09 3.20
1 赵丽.基于直方图均衡的夜间图像增强算法研究[D].兰州:兰州大学, 2018.
ZHAO Li. Nighttime image enhancement algorithm research based on histogram equalization[D]. Lanzhou: Lanzhou University, 2018.
2 赵春丽, 董静薇, 徐博, 等. 融合直方图均衡化与同态滤波的雾天图像增强算法研究[J]. 哈尔滨理工大学学报, 2019, 24 (06): 93- 97.
ZHAO Chunli , DONG Jingwei , XU Bo , et al. Research on finger-image enhancement algorithm based on fusion histogram equalization and homomorphic filtering[J]. Journal of Harbin University of Science and Technology, 2019, 24 (06): 93- 97.
3 ZHOU Z , SANG N , HU X . Global brightness and local contrast adaptive enhancement for low illumination color image[J]. Optik-International Journal for Light and Electron Optics, 2014, 125 (6): 1795- 1799.
doi: 10.1016/j.ijleo.2013.09.051
4 SAYED M S , DELVA J . Low complexity contrast enhancement algorithm for nighttime visual surveillance[J]. Intelligent Systems Design and Applications, 2010, 15 (1): 835- 838.
5 LI Lin, WANG Ronggang, WANG Wenmin, et al. A low-light image enhancement method for both denoising and contrast enlarging[C]//Proceedings of IEEE International Conference on Image Processing. Quebec: IEEE, 2015.
6 董浩伟, 陈洁. 一种基于大气散射模型和Retinex的红外图像去雾算法[J]. 红外技术, 2019, 41 (4): 347- 356.
DONG Haowei , CHEN Jie . Infrared image defogging algorithm based on atmospheric scattering model and Retinex[J]. Infrared Technology, 2019, 41 (4): 347- 356.
7 余春艳, 徐小丹, 林晖翔, 等. 应用雾天退化模型的低照度图像增强[J]. 中国图象图形学报, 2017, 22 (9): 1194- 1205.
YU Chunyan , XU Xiaodan , LIN Huixiang , et al. Low-illumination image enhancement method based on a fog-degraded model[J]. Journal of Image and Graphics, 2017, 22 (9): 1194- 1205.
8 WANG Y F , LIU H M , FU Z W . Low-light image enhancement via the absorption light scattering model[J]. IEEE Transactions on Image Processing, 2019, 28 (11): 5679- 5690.
doi: 10.1109/TIP.2019.2922106
9 方志军, 刘心韵, 伍世虔, 等. 基于子带加权融合的多尺度Retinex图像增强算法[J]. 山东大学学报(理学版), 2013, 48 (11): 93- 98.
FANG Zhijun , LIU Xinyun , WU Shiqian , et al. The multi-scale Retinex algorithm for image enhancement based on sub-band weighting fusion[J]. Journal of Shandong University(Natural Science), 2013, 48 (11): 93- 98.
10 李宏宇, 朱一峰, 黄怡. 基于Retinex改进的夜间图像增强算法[J]. 长春理工大学学报(自然科学版), 2018, 41 (6): 104- 108.
LI Hongyu , ZHU Yifeng , HUANG Yi . Improved night image enhancement algorithm based on Retinex[J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2018, 41 (6): 104- 108.
11 张杰, 周浦城, 薛模根. 基于方向性全变分Retinex的低照度图像增强[J]. 计算机辅助设计与图形学学报, 2018, 30 (10): 1943- 1953.
ZHANG Jie , ZHOU Pucheng , XUE Mogen . Low-light image enhancement based on directional total variation Retinex[J]. Journal of Computer-Aided Design & Computer Graphics, 2018, 30 (10): 1943- 1953.
12 李赓飞, 李桂菊, 韩广良, 等. 亮通道先验Retinex对低照度图像的光照补偿[J]. 光学精密工程, 2018, 26 (5): 1191- 1200.
LI Gengfei , LI Guiju , HAN Guangliang , et al. Illumination compensation using Retinex model based on bright channel prior[J]. Optics and Precision Engineering, 2018, 26 (5): 1191- 1200.
13 RAHMAN Z, JOBSON D J, WOODELL G A. Multiscale Retinex for color image enhancement[C]//Proceedings of the International Conference Image Processing, Lausanne. Switzerland: IEEE, 1996.
14 GUO X , LI Y , LING H . LIME: Low-light image enhancement via illumination map estimation[J]. IEEE Transactions on Image Processing, 2017, 26 (2): 982- 993.
15 WANG S H , ZHENG J , HU H M , et al. Naturalness preserved enhancement algorithm for nonuniform illumination images[J]. IEEE Transactions on Image Processing, 2013, 22 (9): 3538- 3548.
doi: 10.1109/TIP.2013.2261309
16 黄伟国, 张永萍, 毕威, 等. 梯度稀疏和最小平方约束下的低照度图像分解及细节增强[J]. 电子学报, 2018, 46 (2): 424- 432.
HUANG Weiguo , ZHANG Yongping , BI Wei , et al. Low illumination image decomposition and details enhancement under gradient sparse and least square constraint[J]. Acta Electronica Sinica, 2018, 46 (2): 424- 432.
17 涂清华.低照度图像增强与去噪研究[D].泉州:华侨大学, 2016. TU Qinghua. The research on low illumination imageenhancement and denoising[D]. Quanzhou: Huaqiao University, 2016.
[1] PAN Zhen-kuan,WEI Wei-bo,ZHANG Hai-tao . Variational models for image diffusion based on gradient and Laplacian [J]. J4, 2008, 43(11): 11-16 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Ying, JIANG Long*, SUO Xin-li. Choquet integral representation of premium functional and related properties on capacity space[J]. J4, 2013, 48(1): 78 -82 .
[2] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[3] DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in  Yetter-Drinfeld module categories[J]. J4, 2013, 48(2): 20 -22 .
[4] ZHOU Wei-na, ZUO Lian-cui*. A(d,1)-total labeling of Cartesian products of some classes of graphs#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 24 -28 .
[5] HUO Yu-hong, JI Quan-bao. Synchronization analysis of oscillatory activities in a biological cell system[J]. J4, 2010, 45(6): 105 -110 .
[6] ZHANG Xue-feng1, LIU Peng1,2. An improved K-means algorithm by weighted distance based on maximum between-cluster variation[J]. J4, 2010, 45(7): 28 -33 .
[7] CHENG Li-qing1,2, SHI Qiao-lian2. A new hybrid conjugate gradient method[J]. J4, 2010, 45(6): 81 -85 .
[8] SONG Yu-dan, WANG Shi-tong*. Minimum within-class variance SVM with absent features[J]. J4, 2010, 45(7): 102 -107 .
[9] SHI Yan-hua1, SHI Dong-yang2*. The quasi-Wilson nonconforming finite element approximation to  pseudo-hyperbolic equations[J]. J4, 2013, 48(4): 77 -84 .
[10] XIE Yun-long,DU Ying-ling . Function S-rough sets and integral metric of laws[J]. J4, 2007, 42(10): 118 -122 .