JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2020, Vol. 55 ›› Issue (10): 55-62.doi: 10.6040/j.issn.1671-9352.0.2019.636
Previous Articles Next Articles
JIN Jiu-lin1, TENG Wen1,2, ZHU Fu-yang1, YOU Tai-jie1*, QU Yun-yun1
CLC Number:
[1] DÉNES J. On transformations, transformation semigroups and graphs[J]. Theory of Graphs Proc Colloq Tihany, 1966: 65-75. [2] BAĬRAMOV R A. On the problem of completeness in a symmetric semigroup of finite degree[J]. Diskret Analiz, 1966, 8:3-26. [3] TODOROV K, KRACOLOVA L. On the maximal subsemigroups of the ideals of finite symmetric semigroup[J]. Simon Stevin, 1985, 59(2):129-140. [4] YOU Taijie. Maximal regular subsemigroups of certain semigroups of transformations[J]. Semigroup Forum, 2002, 64(3):391-396. [5] YANG Haobo, YANG Xiuliang. Maximal subsemigroups of finite transformation semigroups K(n,r)[J]. Acta Mathematica Sinica, 2004, 20(3):475-482. [6] EAST J, MITCHELL J D, PÉRESSE Y. Maximal subsemigroups of the semigroup of all mappings on an infinite set[J]. Transactions of the American Mathematical Society, 2015, 367(3):1911-1944. [7] CHAIYA Y, HONYAM P, SANWONG J. Maximal subsemigroups and finiteness conditions on transformation semigroups with fixed sets[J]. Turkish Journal of Mathematics, 2017, 41(1):43-54. [8] 高荣海. P On的极大幂等元生成子半群[J]. 贵州师范大学学报(自然科学版), 2012, 30(4):66-68. GAO Ronghai. Maximal idempotent-generated subsemigroups of P On[J]. Journal of Guizhou Normal University(Natural Sciences), 2012, 30(4):66-68. [9] 金久林, 游泰杰, 孙艳, 等. 全变换半群的极大子左(右)群[J]. 贵州师范大学学报(自然科学版), 2016, 34(6):52-55. JIN Jiulin, YOU Taijie, SUN Yan, et al. Maximal left(right)group of the full transformation semigroup[J]. Journal of Guizhou Normal University(Natural Sciences), 2016, 34(6):52-55. [10] 金久林, 游泰杰. 半群MC(n,r)的极大子半群[J]. 吉林大学学报(理学版), 2017, 55(3):523-530. JIN Jiulin, YOU Taijie. Maximal subsemigroups of semigroup MC(n,r)[J]. Journal of Jilin University(Science Edition), 2017, 55(3):523-530. [11] 金久林, 游泰杰, 徐波. 有限全变换半群变种具有某种性质的极大子半群[J]. 吉林大学学报(理学版), 2018, 56(3):549-555. JIN Jiulin, YOU Taijie, XU Bo. Maximal subsemigroups of some properties in variants of finite full transformation semigroups[J]. Journal of Jilin University(Science Edition), 2018, 56(3):549-555. [12] MAGILL K D. Subsemigroups of S(X)[J]. Math Japan, 1966, 11:109-115. [13] YANG Xiuliang, YANG Haobo. Maximal half-transitive submonoids of full transformation semigroup[J]. Advances Mathematics, 2011, 40(5):580-586. [14] HONYAM P, SANWONG J. Semigroups of transformations with invariant set[J]. Journal of the Korean Mathematical Society, 2011, 48(2):289-300. [15] 冯正浩, 杨秀良. 有限弱Y-稳定变换半群的极小同余[J]. 浙江大学学报(理学版), 2011, 38(5):495-496. FENG Zhenghao, YANG Xiuliang. Minimal congruences on finite transformation semigroup of weak Y-stabilizer[J]. Journal of Zhejiang University(Science Edition), 2011, 38(5):495-496. [16] 张佳. 变换半群的完全正则性和超富足性[J]. 西南大学学报(自然科学版), 2011, 33(8):99-101. ZHANG Jia. Complete regularity and super-abundance of some transformation semigroups[J]. Journal of Southwest University(Natural Science Edition), 2011, 33(8):99-101. [17] 张佳. 一类变换半群的极大逆子半群[J]. 阜阳师范学院学报(自然科学版), 2016, 33(3):6-7,16. ZHANG Jia. A class of maximal inverse sub-semigroups of some transformation semigroups[J]. Journal of Fuyang Normal University(Natural Science), 2016, 33(3):6-7,16. [18] 金久林, 祝富洋, 游泰杰, 等. 有限弱Y-稳定变换半群的秩[J]. 东北师大学报(自然科学版), 2020,52(3):50-55. JIN Jiulin, ZHU Fuyang, YOU Taijie, et al. Rank of the finite transformation semigroup of weak Y-stabilizer[J]. Journal of Northeast NormalUniversity(Natural Science Edition), 2020, 52(3):50-55. [19] SUN Lei, WANG Limin. Natural partial order in semigroups of transformations with invariant set[J]. Bulletin of the Australian Mathematical Society, 2013, 87(1):94-107. [20] SUN Lei, SUN Junling. A note on natural partial order in semigroups of transformations with invariant set[J]. Bulletin of the Australian Mathematical Society, 2015, 91(2):264-267. [21] ZHANG Jia, LUO Yanfeng. On certain order-preserving transformation semigroups[J]. Communications in Algebra, 2017, 45(7):2980-2995. [22] TOKER K, AYIK H. On the rank of transformation semigroup T(n,m)[J]. Turkish Journal of Mathematics, 2018, 42:1970-1977. [23] CHINRAM R, BAUPRADIST S. Magnifying elements of semigroups of transformations with invariant set[J/OL]. Asian-European Journal of Mathematics, [2018-5-23]. https://doi.org/10.1142/S1793557119500566. [24] HOWIE J M. Fundamentals of semigroup theory[M]. London: Oxford University Press, 1995. [25] LIEBECK M W, PRAEGER C E, SAXL J. A classification of the maximal subgroups of the finite alternating and symmetric groups[J]. Journal of Algebra, 1987, 111:365-383. [26] THÉVENAZ J. Maximal subgroups of direct products[J]. Journal of Algebra, 1997, 198:352-361. |
[1] | ZHANG Qian-tao, LUO Yong-gui, ZHAO Ping. Rank and relative rank of the semigroup PD(n,r) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 63-70. |
[2] | LUO Yong-gui. Maximal(regular)subsemigroups of the semigroup W(n,r) [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(10): 7-11. |
[3] | LUO Yong-gui, XU Bo, YOU Tai-jie. On the rank and idempotent rank of each star ideal of the semigroup PHn [J]. J4, 2013, 48(2): 42-48. |
[4] | LUO Yong-gui. Non-group rank and relative rank of the semigroup W(n,r) [J]. J4, 2013, 48(12): 70-74. |
[5] | ZHAO Ping. On the idempotent ranks of the semigroup V(n,r) [J]. J4, 2012, 47(2): 78-81. |
[6] |
GAO Rong-hai1,2, XU Bo1.
On the rank of order-preserving and compressing singular transformation semigroups [J]. J4, 2011, 46(6): 4-7. |
[7] | ZHAO Ping1, YOU Tai-jie2, XU Bo2, HU Hua-bi1. Idempotent rank in decreasing and order-preserving finite partial transformation semigroups [J]. J4, 2011, 46(4): 75-77. |
[8] | ZHAO Ping1, HU hua-bi1, XU Bo2. Maximal regular subsemigroups of orientation-preserving or orientation-reserving transformation semigroups I(n,r) [J]. J4, 2011, 46(12): 60-65. |
[9] | CAO Yong . On the BQ property of linear ordered transformation semigroups [J]. J4, 2008, 43(2): 98-100 . |
|