JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (4): 46-53.doi: 10.6040/j.issn.1671-9352.0.2020.521

Previous Articles    

Finitely embedded modules over triangular matrix rings of order n

SUN Bo, YIN Yu-jie, DI Zhen-xing*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2021-04-13

Abstract: Let Γ be a triangular matrix ring of order n, where n≥2 is an integer. The equivalent characterization of a Γ-module whose submodule is an essential submodule, and the concrete description of the socle of a Γ-module are given. In particular, as an application of the above conclusion, a necessary and sufficient condition for a Γ-module to be a finitely embedded module is given.

Key words: triangular matrix ring of order n, essential submodule, socle, finitely embedded module

CLC Number: 

  • O153.3
[1] HAGHANY A, VARADARAJAN K. Study of modules over formal triangular matrix rings[J]. J Pure Appl Algebra, 2000, 147:41-58.
[2] WANG Ren. Gorenstein triangular matrix rings and category algebras[J]. J Pure Appl Algebra, 2016, 220:666-682.
[3] HAGHANY A, VARADARAJAN K. Study of formal triangular matrix rings[J]. Comm Algebra, 1999, 27(11):5507-5525.
[4] CHEN Huanyin. On the structure of triangular matrix rings[J]. Journal of Nanjing University(Mathematical Biquarterly), 1999, 16(2):153-157.
[5] ANDERSON F W, FULLER Kent R. Rings and categories of modules[M]. 2nd ed. New York: Springer, 1992.
[6] GOODEARL K R, WARFIELD R B. An introduction to non-commutative noetherian rings[M] //London Math Soc, Vol 16, Student Texts. New York: Springer, 1989.
[1] CHEN Ling-qiao, TANG Gou-liang, DI Zhen-xing. Equivalent characterization of(strong)Kasch triangular matrix ring of order n [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(4): 25-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!