JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (8): 32-38.doi: 10.6040/j.issn.1671-9352.0.2021.043

Previous Articles    

Some properties of JQ rings

MA Guang-lin1, WANG Yao1, REN Yan-li2*   

  1. 1. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China;
    2. School of Information Engineering, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu, China
  • Published:2021-08-09

Abstract: The concept of JQ rings is introduced. A ring R is called a JQ ring if its Jacobson radical coincides with the set of all quasi regular elements. We give some examples of JQ rings, and discuss the extension properties of JQ rings.

Key words: Jacobson radical, quasi-regular element, ideal extension, Nagata extension, Morita Context ring

CLC Number: 

  • O153.3
[1] 刘绍学. 环与代数[M]. 北京: 科学出版社,2001. LIU Shaoxue. Rings and algebra[M]. Beijing: Science Press, 2001.
[2] JAIN S K, RIZVI S T. Proceedings of the Biennial Ohio State-Denison Conference(1992)[M] // Ring Theory. Singapore: World Scientific, 1993: 102-129.
[3] CHEN W, GUI S. On weakly semicommutative rings[J]. Commun Math Res, 2011, 7(2):179-192.
[4] MARKS G. On 2-primal ore extension[J]. Commun Algebra, 2001, 29(5):2113-2123.
[5] JIANG M, WANG Y, REN Y. Extensions and topological conditions of NJ rings[J]. Turk J Math, 2019, 43(1):44-62.
[6] BIRKENMEIER G F, KIM J Y, PARKJ K. Regularity conditions and the simplicity of prime factor rings[J]. J Pure Appl Algebra, 1997, 115(3):213-230.
[7] HWANG S U, JEON Y C, LEE Y. Structure and topological conditions of NI rings[J]. J Algebra, 2006, 302(1):186-199.
[8] SHIN G. Prime ideals and sheaf representation of a pseudo symmetric ring[J]. T Am Math Soc, 1973, 184:43-60.
[9] WANG Y, JIANG M, REN Y. Ore extensions over weakly 2-primal rings[J]. Commun Math Res, 2016, 1:70-82.
[10] NICHOLSON W K, ZHOU Y. Clean general rings[J]. J Algebra, 2005, 291(1):297-311.
[11] 王尧,周昊,任艳丽. 环R{D,C}的一些性质[J]. 数学的实践与认识,2020,50(12):173-181. WANG Yao, ZHOU Hao, REN Yanli. Some properties of ring R{D,C}[J]. Mathematics in Practice and Theory, 2020, 50(12):173-181.
[12] NAGATA M. Local Rings[M]. New York: Interscience, 1962.
[13] 王尧,任艳丽. Morita context 环的根[J]. 数学进展,2016,45(2):195-205. WANG Yao, REN Yanli. Radicals of Morita context rings[J]. Advances in Mathematics(China), 2020, 45(2):195-205.
[1] MA Guang-lin, WANG Yao, REN Yan-li. Some extensions of T-nilpotent rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(12): 68-73.
[2] WANG Yao1, JIANG Mei-mei1, REN Yan-li2*. Some properties of skew polynomial rings#br# [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 40-45.
[3] WANG Xiu-jian1,2, CHENG Zhi1, DU Xian-neng1*. Morita context rings with a pair of zero homomorphism [J]. J4, 2013, 48(6): 42-45.
[4] TIAN Hong-yan, XU Xin-zhai*, MA Jing. On t-ordered semigroups [J]. J4, 2011, 46(3): 78-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!