JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (8): 76-80.doi: 10.6040/j.issn.1671-9352.0.2021.009

Previous Articles    

Constitutions and Abelian extensions of δ-Jordan Lie supertriple systems

MA Li-li, DAI Di, LI Qiang   

  1. School of Science, Qiqihar University, Qiqihar 161006, Heilongjiang, China
  • Published:2021-08-09

Abstract: The 3-cocycle is given using the Abelian extension of δ-Jordan Lie supertriple systems. The δ-Jordan Lie supertriple system is constructed by the representation and a 3-cocycle. It is shown that two Abelian extensions of δ-Jordan Lie supertriple systems are equivalent if and only if 3-cocycles are in the same cohomology class.

Key words: δ-Jordan Lie supertriple system, 3-cocycle, Abelian extension

CLC Number: 

  • O152.5
[1] OKUBO S. Parastatistics as Lie supertriple systems[J]. J Math Phys, 1994, 35:2785-2803.
[2] OKUBO S, KAMIYA N. Quasi-classical Lie superalgebras and Lie supertriple systems[J]. Comm Algebra, 2002, 30(8):3825-3850.
[3] 马瑶, 陈良云, 刘东. 李超三系的广义导子[J]. 数学学报, 2013, 56(6):961-970. MA Yao, CHEN Liangyun, LIU Dong. On generalized derivations of Lie supertriple systems [J]. Acta Math Sin, 2013, 56(6):961-970.
[4] PENG Jianrong, CHEN Liangyun, SUN Bing. Centroids of Lie supertriple systems[J]. Adv Math Phys, 2015, ID: 949046.
[5] 郭双建. 李超三系的上同调和 Nijenhuis 算子[J]. 华东师范大学学报(自然科学版), 2020, 54(5):758-765. GUO Shuangjian. Cohomology and Nijenhuis operators of Lie supertriple systems[J]. Journal of East China Normal University(Natural Science), 2020, 54(5):758-765.
[6] KUBO F, TANIGUCHI Y. A controlling cohomology of the deformation theory of Lie triple systems[J]. J Algebra, 2004, 278(1):242-250.
[7] MA Lili, CHEN Liangyun. On δ-Jordan Lie triple systems[J]. Linear Multilinear Algebra, 2017, 65(4):731-751.
[8] MA Lili, CHEN Liangyun, ZHAO Jun. δ-Hom-Jordan Lie superalgebras[J]. Comm Algebra, 2018, 46(4):1668-1697.
[9] 马丽丽, 李强. Hom-Jordan李超代数的交换扩张[J].吉林大学学报(理学版), 2020, 58(4):803-807. MA Lili, LI Qiang. Abelian extensions of Hom-Jordan Lie superalgebras [J]. Journal of Jilin University(Science Edition), 2020, 58(4):803-807.
[10] 马丽丽, 李强. δ-李color代数的交换扩张[J]. 山东大学学报(理学版), 2020, 55(8):38-42. MA Lili, LI Qiang. Abelian extensions of δ-Lie color algebras [J]. Journal of Shandong University(Natural Science), 2020, 55(8):38-42.
[11] WANG Shengxiang, ZHANG Xiaohui, GUO Shuangjian. Derivations and deformations of δ-Jordan Lie supertriple systems[J]. Adv Math Phys, 2019, ID:3295462.
[12] ZHAO Jun, CHEN Liangyun, MA Lili. Representations and T*-extensions of hom-Jordan-Lie algebras[J]. Comm Algebra, 2016, 44(7):2786-2812.
[1] TENG Wen, JIN Jiu-lin, YOU Tai-jie. Linear deformations and Abelian extensions of Lie supertriple systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(4): 14-19.
[2] MA Li-li, LI Qiang. Abelian extensions of δ-Lie color algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(8): 38-42.
[3] LI Qiang, MA Li-li, WANG Xiao-yan, LYU Li-jiao. Abelian extensions of Hom-Jordan Lie algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(12): 4-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!