JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (9): 42-49.doi: 10.6040/j.issn.1671-9352.0.2020.350

Previous Articles    

Spectrum of a class of discrete left-definite Sturm-Liouville problems

CAO Xue-qin, GAO Cheng-hua*   

  1. School of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2021-09-13

Abstract: Considering the spectrum of a class of discrete left-definite Sturm-Liouville problems with eigenparameter dependent boundary conditions, the interlacing properties of the eigenvalues and oscillation properties of the eigenfunctions are obtained.

Key words: discrete left-definite Sturm-Liouville problem, eigenparameter-dependent boundary condition, interlacing property, oscillation property

CLC Number: 

  • O175.7
[1] VLADIMIROV S V. Equations of the mathematical physics[J]. American Journal of Physics, 1971, 39(12):1548.
[2] COURANT R, FRIEDRICHS K, LEWY H. On the partial difference equations of mathematical physics[J]. IBM Journal of Research and Development, 1967, 11(2):215-234.
[3] DIJKSMA A, LANGER H, SNOO H D. Eigenvalues and pole functions of Hamiltonian systems with eigenvalue depending boundary conditions[J]. Mathematische Nachrichten, 1993, 161(1):107-154.
[4] CURGUS B, DIJKSMA A, READ T. The linearization of boundary eigenvalue problems and reproducing kernel Hilbert spaces[J]. Linear Algebra and its Applications, 2001, 329(1):97-136.
[5] FULTON C. Two-point boundary value problems with eigenvalue parameter contained in the boundary condition[J]. Proceedings of the Edinburgh Mathematical Society, 1977, 77(3/4):293-308.
[6] BINDING P, BROWNE P J. Sturm-Liouville problems with eigenparameter dependent boundary conditions[J]. Proceedings of the Edinburgh Mathematical Society, 1993, 37(1):57-72.
[7] BINDING P, BROWNE P J. Left-definite Sturm-Liouville problems with eigenparameter dependent boundary conditions[J]. International Journal of Differential Equations, 1999, 12(2):167-182.
[8] WANG Zhong, WU Hongyou. Dissipative non-self-adjoint Sturm-Liouville operators and completeness of their eigenfunctions[J]. Journal of Mathematical Analysis and Applications, 2012, 394(1):1-12.
[9] EASTHAM M S P. The asymptotic nature of spectral functions in Sturm-Liouville problems with continuous spectrum[J]. Journal of Mathematical Analysis and Applications, 1997, 213(2):573-582.
[10] WANG Yi, SHI Yuming. Eigenvalues of second-order difference equations with periodic and antiperiodic boundary conditions[J]. Journal of Mathematical Analysis and Applications, 2005, 309(1):56-69.
[11] HARMSEN B J, LI A. Discrete Sturm-Liouville problems with parameter in the boundary conditions[J]. Journal of Difference Equations and Applications, 2002, 8(11):969-981.
[12] GAO Chenghua, MA Ruyun. Eigenvalues of discrete Sturm-Liouville problems with eigenparameter dependent boundary conditions[J]. Linear Algebra and its Applications, 2016, 503:100-119.
[13] GAO Chenghua, MA Ruyun, ZHANG Fei. Spectrum of discrete left definite Sturm-Liouville problems with eigenparameter dependent boundary conditions[J]. Linear Multilinear Algebra, 2017, 65(9):1905-1923.
[14] BELINSKIY B, DAUER J P, XU Y. Inverse scattering of acoustic waves in an ocean with ice cover[J]. Applicable Analysis, 1996, 61(3/4):255-283.
[15] KAPUSTIN N. On the basis property of the system of eigenfunctions of a problem with squared spectral parameter in a boundary condition[J]. Differential Equations a Translation of Differensialnye Uraveniya, 2015, 51(10):1284-1289.
[16] HARMSEN B J, LI A. Discrete Sturm-Liouville problems with nonlinear parameter in the boundary conditions[J]. Journal of Difference Equations and Applications, 2007, 13(7):639-653.
[17] GAO Chenghua, LI Xiaolong, ZHANG Fei. Eigenvalues of discrete Sturm-Liouville problems with nonlinear eigenparameter dependent boundary conditions[J]. Quaestiones Mathematicae, 2018, 41(6):773-797.
[18] GAO Chenghua, WANG Yali, LV Li. Spectral properties of discrete Sturm-Liouville problems with two squared eigenparameter-dependent boundary conditions[J]. Acta Mathematica Scientia, 2020, 40(3):755-781.
[1] RAN Mao-jun, GAO Cheng-hua. Asymptotic formula for eigenvalues and eigenfunctions of Sturm-Liouville question [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(2): 57-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!