JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2021, Vol. 56 ›› Issue (10): 113-126.doi: 10.6040/j.issn.1671-9352.9.2021.013

Previous Articles     Next Articles

Bistable solvated dielectron in liquid methylamine: intriguing spin crossover dynamics and dielectron exchanges

BU Yuxiang1*, LUO Qi1,2   

  1. 1. School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, China;
    2. Affiliated High School, Shandong University, Jinan 250199, Shandong, China
  • Online:2021-10-20 Published:2021-09-28

Abstract: We present a detailed ab initio molecular dynamics simulation study on solvated dielectron in a type of commonly used liquid medium(liquid methylamine)and reveal unique structures and time evolution dynamics of two excess electrons. We particularly unravel intriguing spin crossover dynamics character of a solvated dielectron which features a bistable bipolaron. Our simulation results indicate that a dielectron in liquid methylamine prefers to accommodate into two independent cavities and evolves non-synchronously with steady dynamics in the singlet state or electron exchange dynamics in the triplet state. More interestingly, both trajectories reveal that the dynamic bipolaron exhibits bistability with frequent spin crossovers between the ferromagnetic and antiferromagnetic states in time evolution. This work presents the first detailed study on the dynamic spin crossover phenomenon of a bistable solvated dielectron in a commonly used liquid medium and provides novel insights into the magnetic liquids for promising applications.

Key words: solvated dielectron, bistable bipolaron, spin crossover dynamics, electron migration, ab initio molecular dynamics simulation

CLC Number: 

  • O641.12+1
[1] WEYL W. Ueber die bildung des ammoniums und einiger ammoniummetalle[J]. Annalen Der Physik Und Chemie, 1864, 199(10):350-367.
[2] HART E J, BOAG J W. Absorption spectrum of the hydrated electron in water and in aqueous solutions[J]. Journal of the American Chemical Society, 1962, 84(21):4090-4095.
[3] KEENE J P. Absorption spectra in irradiated water and some solutions: optical absorptions in irradiated water[J]. Nature, 1963, 197(4862):47-48. doi:10.1038/197047a0.
[4] XIA P, YU N, BLOOMFIELD L A. Experimental and theoretical studies of single excess electrons in sodium chloride cluster anions[J]. Physical Review B: Condensed Matter, 1993, 47(15):10040-10043.
[5] LAENEN R, ROTH T, LAUBEREAU A. Novel precursors of solvated electrons in water: evidence for a charge transfer process[J]. Physical Review Letters, 2000, 85(1):50. doi:10.1103/physrevlett.85.50.
[6] BRAGG A E. Hydrated electron dynamics: from clusters to bulk[J]. Science, 2004, 306(5696):669-671.
[7] HAMMER N I, SHIN J W, HEADRICK J M, et al. How do small water clusters bind an excess electron?[J]. Science, 2004, 306(5696):675-679.
[8] PAIK D H, LEE I R, YANG D S, et al. Electrons in finite-sized water cavities: hydration dynamics observed in real time[J]. Science, 2004, 306(5696):672-675.
[9] KIM K S, PARK I I, LEE S, et al. The nature of a wet electron[J]. Physical Review Letters, 1996, 76(6):956-959.
[10] JORDAN K D, WANG F. Theory of dipole-boundanions[J]. Annual Review of Physical Chemistry, 2003, 54(1):367-396.
[11] JORDAN K D. CHEMISTRY: a fresh look at electron hydration[J]. Science, 2004, 306(5696):618-619.
[12] BARRIOS R, SKURSKI P, SIMONS J. Mechanism for damage to DNA by low-energy electrons[J]. The Journal of Physical Chemistry B, 2002, 106(33):7991-7994.
[13] VERLET J R, BRAGG A E, KAMMRATH A, et al. Comment on “Characterization of excess electrons in water-cluster anions by quantum simulations”[J]. Science, 2005, 310(5755):1769-1769.
[14] TURI L. Characterization of excess electrons in water-cluster anions by quantum simulations[J]. Science, 2005, 309(5736):914-917.
[15] ZHENG Y, WAGNER J R, SANCHE L. DNA damage induced by low-energy electrons: electron transfer and diffraction[J]. Physical Review Letters, 2006, 96(20):208101.
[16] SOMMERFELD T, JORDAN K D. Electron binding motifs of(H2O)n-clusters[J]. Journal of the American Chemical Society, 2006, 128(17):5828-5833.
[17] HERBERT J M, HEAD-GORDON M. Charge penetration and the origin of large O—H vibrational red-shifts in hydrated-electron clusters,(H2O)n-[J]. Journal of the American Chemical Society, 2006, 128(42):13932-13939.
[18] BOERO M. Excess electron in water at different thermodynamic conditions[J]. The Journal of Physical Chemistry A, 2007, 111(49):12248-12256.
[19] WANG Z P, ZHANG L, CHEN X H, et al. Excess electron solvation in an imidazolium-based room-temperature ionic liquid revealed by ab initio molecular dynamics simulations[J]. The Journal of Physical Chemistry B, 2009, 113(24):8222-8226.
[20] WANG Z, ZHANG L, CUKIER R I, et al. States and migration of an excess electron in a pyridinium-based, room-temperature ionic liquid: an ab initio molecular dynamics simulation exploration[J]. Physical Chemistry Chemical Physics, 2010, 12(8):1854-1861.
[21] MARGULIS C J, ANNAPUREDDY H V R, DE BIASE P M, et al. Dry excess electrons in room-temperature ionic liquids[J]. Journal of the American Chemical Society, 2011, 133(50):20186-20193.
[22] LIU J X, CUKIER R I, BU Y X. Bending vibration-governed solvation dynamics of an excess electron in liquid acetonitrile revealed by ab initio molecular dynamics simulation[J]. Journal of Chemical Theory and Computation, 2013, 9(11):4727-4734.
[23] WANG Z, LIU J, ZHANG M, et al. Solvation and evolution dynamics of an excess electron in supercritical CO2[J]. Physical Review Letters, 2012, 108(20):207601.
[24] TAKAYANAGI T. Theoretical simulations of dynamics of excess electron attachment to acetonitrile clusters[J]. Chemical Physics, 2004, 302(1/2/3):85-93.
[25] TAKAHASHI K, SATO T, KATSUMURA Y, et al. Reactions of solvated electrons with imidazolium cations in ionic liquids[J]. Radiation Physics and Chemistry, 2008, 77(10/11/12):1239-1243.
[26] MUSAT R M, KONDOH T, YOSHIDA Y, et al. Twin-peaks absorption spectra of excess electron in ionic liquids[J]. Radiation Physics and Chemistry, 2014, 100:32-37.
[27] SCHWARTZ B J, ROSSKY P J. Aqueous solvation dynamics with a quantum mechanical solute: computer simulation studies of the photoexcited hydrated electron[J]. The Journal of Chemical Physics, 1994, 101(8):6902-6916.
[28] LARSEN R E, GLOVER W J, SCHWARTZ B J. Does the hydrated electron occupy a cavity?[J]. Science, 2010, 329(5987):65-69.
[29] XU C H, DURUMERIC A, KASHYAP H K, et al. Dynamics of excess electronic charge in aliphatic ionic liquids containing the bis(trifluoromethylsulfonyl)amide anion[J]. Journal of the American Chemical Society, 2013, 135(46):17528-17536.
[30] LIU J, CUKIER R I, BU Y, et al. Glucose-promoted localization dynamics of excess electrons in aqueous glucose solution revealed by ab initio molecular dynamics simulation[J]. Journal of Chemical Theory and Computation, 2014, 10(10):4189-4197.
[31] XU C H, MARGULIS C J. Solvation of an excess electron in pyrrolidinium dicyanamide based ionic liquids[J]. The Journal of Physical Chemistry B, 2015, 119(2):532-542.
[32] WU X X, GAO L, LIU J X, et al. Excess electron reactivity in amino acid aqueous solution revealed by ab initio molecular dynamics simulation: anion-centered localization and anion-relayed electron transfer dissociation[J]. Physical Chemistry Chemical Physics, 2015, 17(40):26854-26863.
[33] XIA P, BLOOMFIELD L. Accommodation of two excess electrons in sodium chloride cluster anions[J]. Physical Review Letters, 1993, 70(12):1779-1782.
[34] BARNETT R N, GINIGER R, CHESHNOVSKY O, et al. Dielectron attachment and hydrogen evolution reaction in water clusters[J]. The Journal of Physical Chemistry A, 2011, 115(25):7378-7391.
[35] FENG D F, FEUKI K, KEVAN L. Semicontinuum model for the trapped dielectron in polar liquids and solids[J]. The Journal of Chemical Physics, 1973, 58(8):3281-3294.
[36] KEVAN L, RENNEKE D R, FRIAUF R J. Optical absorption spectrum of trapped dielectrons in alkaline ice[J]. Solid State Communications, 1968, 6(7):469-471.
[37] ZIMBRICK J, KEVAN L. Evidence for trapped dielectrons in ice[J]. Journal of the American Chemical Society, 1967, 89(10):2483-2484.
[38] FLWLER W B. Physics of color centers[M]. New York: Academic Press, 1968.
[39] KENNEY-WALLACE G, WALKER D C. Concerning the optical absorption band of the hydrated electron[J]. Berichte Der Bunsengesellschaft Für Physikalische Chemie, 1971, 75(7):634-637.
[40] FUEKI K. Theory of the trapped dielectron[J]. The Journal of Chemical Physics, 1969, 50(12):5381-5385.
[41] LARSEN R E, SCHWARTZ B J. Mixed quantum/classical molecular dynamics simulations of the hydrated dielectron: the role of exchange in condensed-phase structure, dynamics, and spectroscopy[J]. The Journal of Physical Chemistry B, 2004, 108(31):11760-11773.
[42] LARSEN R E, SCHWARTZ B J. Nonadiabatic molecular dynamics simulations of correlated electrons in solution: 1. Full configuration interaction(CI)excited-state relaxation dynamics of hydrated dielectrons[J]. The Journal of Physical Chemistry B, 2006, 110(19):9681-9691.
[43] LARSEN R E, SCHWARTZ B J. Nonadiabatic molecular dynamics simulations of correlated electrons in solution: 2. A prediction for the observation of hydrated dielectrons with Pump-Probe spectroscopy[J]. The Journal of Physical Chemistry B, 2006, 110(19):9692-9697.
[44] LARSEN R E, SCHWARTZ B J. Full configuration interaction computer simulation study of the thermodynamic and kinetic stability of hydrated dielectrons[J]. The Journal of Physical Chemistry B, 2006, 110(2):1006-1014.
[45] DENG Z, MARTYNA G J, KLEIN M L. Structure and dynamics of bipolarons in liquid ammonia[J]. Physical Review Letters, 1992, 68(16):2496-2499.
[46] KAUKONEN H P, BARNETT R N, LANDMAN U. Dielectrons in water clusters[J]. The Journal of Chemical Physics, 1992, 97(2):1365-1377.
[47] ZHANG L, YAN S H, CUKIER R I, et al. Solvation of excess electrons in LiF ionic pair matrix: evidence for a solvated dielectron from ab initio molecular dynamics simulations and calculations[J]. The Journal of Physical Chemistry B, 2008, 112(12):3767-3772.
[48] LIU J, WANG Z, ZHANG M, et al. Excess dielectron in an ionic liquid as a dynamic bipolaron[J]. Physical Review Letters, 2013, 110(10):107602.
[49] KIM S W, SHIMOYAMA T, HOSONO H. Solvated electrons in high-temperature melts and glasses of the room-temperature stable electride Ca24Al28O64] 4+·4e-[J]. Science, 2011, 333(6038):71-74.
[50] CAMBI L, SZEGÖ L. Über die magnetische susceptibilität der komplexen verbindungen[J]. Berichte Der Deutschen Chemischen Gesellschaft(A and B Series), 1931, 64(10):2591-2598.
[51] WENTZCOVITCH R M, JUSTO J F, WU Z, et al. Anomalous compressibility of ferropericlase throughout the iron spin cross-over[J]. PNAS, 2009, 106(21):8447-8452.
[52] WU Z, JUSTO J F, DA SILVA C R S, et al. Publishers note: anomalous thermodynamic properties in ferropericlase throughout its spin crossoverPhys. Rev. B80, 014409(2009)[J]. Physical Review B, 2009, 80(9):099901.
[53] GÜTLICH P, GOODWIN H A. Spin crossover in transition metal compounds III[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004.
[54] COTTON F A, WILKINSON G, GAUS P L. Basic Inorganic Chemistry[M]. New Jersey: Wiley, 1995.
[55] REAL J A, GASPAR A B, MU(~overN)OZ M C. Thermal, pressure and light switchable spin-crossover materials[J]. Dalton Transactions(Cambridge, England), 2005(12):2062-2079.
[56] FRISENDA R, HARZMANN G D, CELIS GIL J A, et al. Stretching-induced conductance increase in a spin-crossover molecule[J]. Nano Letters, 2016, 16(8):4733-4737.
[57] SCHEIDT W R, REED C A. Spin-state/stereochemical relationships in iron porphyrins: implications for the hemoproteins[J]. Chemical Reviews, 1981, 81(6):543-555.
[58] ABABEI R, PICHON C, ROUBEAU O, et al. Rational design of a photomagnetic chain: bridging single-molecule magnets with a spin-crossover complex[J]. Journal of the American Chemical Society, 2013, 135(39):14840-14853.
[59] WESTON L, CUI X Y, RINGER S P, et al. Bistable magnetism and potential for voltage-induced spin crossover in dilute magnetic ferroelectrics[J]. Physical Review Letters, 2015, 114(24):247601.
[60] AVENDANO C, HILFIGER M G, PROSVIRIN A, et al. Temperature and light induced bistability in a Co3[Os(CN)6] 2 6H2O Prussian blue analog[J]. Journal of the American Chemical Society, 2010, 132(38):13123-13125.
[61] HOLMSTRÖM E, STIXRUDE L. Spin crossover in ferropericlase from first-principles molecular dynamics[J]. Physical Review Letters, 2015, 114(11):117202.
[62] WANG H Y, GE J Y, HUA C, et al. Photo- and electronically switchable spin-crossover iron(II)metal-organic frameworks based on a tetrathiafulvalene ligand[J]. Angewandte Chemie International Edition, 2017, 56(20):5465-5470.
[63] ORMAZA M, ABUFAGER P, VERLHAC B, et al. Controlled spin switching in a metallocene molecular junction[J]. Nature Communications, 2017, 8(1):1974.
[64] SHIMIZU Y, TAKAHASHI T, YAMADA S, et al. Symmetry preservation and critical fluctuations in a pseudospin crossover perovskite LaCoO3[J]. Physical Review Letters, 2017, 119(26):267203.
[65] LI D F, CLÉRAC R, ROUBEAU O, et al. Magnetic and optical bistability driven by thermally and photoinduced intramolecular electron transfer in a molecular cobalt-iron Prussian blue analogue[J]. Journal of the American Chemical Society, 2008, 130(1):252-258.
[66] SEEL A G, SWAN H, BOWRON D T, et al. Electron solvation and the unique liquid structure of a mixed-amine expanded metal: the saturated Li-NH3-MeNH2 system[J]. Angewandte Chemie International Edition, 2017, 56(6):1561-1565.
[67] MAEDA K, LODGE M T J, HARMER J, et al. Electron tunneling in lithium-ammonia solutions probed by frequency-dependent electron spin relaxation studies[J]. Journal of the American Chemical Society, 2012, 134(22):9209-9218.
[68] HOLTON D M, EDWARDS P P, MCFARLANE W, et al. Multinuclear NMR study of the solvated electron in lithium-methylamine solutions[J]. Journal of the American Chemical Society, 1983, 105(8):2104-2108.
[69] STUPAK C M, TUTTLE T R, GOLDEN S. Solvated electron optical absorption spectra in liquid methylamine[J]. The Journal of Physical Chemistry, 1982, 86(3):327.
[70] NAKAMURA Y, NIIBE M, SHIMOJI M. NMR study of lithium in liquid ammonia and methylamine[J]. The Journal of Physical Chemistry, 1984, 88(17):3755-3760.
[71] HAYAMA S, WASSE J C, SKIPPER N T, et al. Structure of solutions of lithium in methylamine across the metal-nonmetal transition[J]. The Journal of Physical Chemistry B, 2002, 106(1):11-14.
[72] HERSHBERGER W D, TURKEVICH J. Absorption of methyl alcohol and methylamine for 1.25-Cm waves[J]. Physical Review, 1947, 71(8):554-554.
[73] HUDSON R P, MCLANE C K. Magnetic and thermal properties of chromic methylamine alum below 1K[J]. Physical Review, 1954, 95(4):932.
[74] ZHANG L X, SONG Q, ZHANG S B. Exceptionally strong hydrogen bonds affect the surface energy of colloidal nanocrystals: methylamine and water adsorption on PbS[J]. Physical Review Letters, 2010, 104(11):116101.
[75] ILYUSHIN V V, JANSEN P, KOZLOV M G, et al. Sensitivity to a possible variation of the proton-to-electron mass ratio of torsion-wagging-rotation transitions in methylamine CH3NH2[J]. Physical Review A, 2012, 85(3):032505.
[76] EDWARDS P P, BUNTAINE J R, SIENKO M J. Electron- and nuclear-spin-lattice relaxation and the metal-nonmetal transition in lithium-methylamine solutions[J]. Physical Review B, 1979, 19(11):5835.
[77] DE KLERK D, HUDSON R P. Adiabatic demagnetization of chromium methylamine alum[J]. Physical Review, 1953, 91(2):278.
[78] ZHOU Z M, WANG Z W, ZHOU Y Y, et al. Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells[J]. Angewandte Chemie, 2015, 127(33):9841-9845.
[79] NIESNER D, ZHU H, MIYATA K, et al. Persistent energetic electrons in methylammonium lead iodide perovskite thin films[J]. Journal of the American Chemical Society, 2016, 138(48):15717-15726.
[80] HARUYAMA J, SODEYAMA K, HAN L, et al. First-principles study of ion diffusion in perovskite solar cell sensitizers[J]. Journal of the American Chemical Society, 2015, 137(32):10048-10051.
[81] YAFFE O, GUO Y, TAN L Z, et al. Local polar fluctuations in lead halide perovskite crystals[J]. Physical Review Letters, 2017, 118(13):136001.
[82] NIESNER D, WILHELM M, LEVCHUK I, et al. Giant rashba splitting in CH3NH3PbBr3 organic-inorganic perovskite[J]. Physical Review Letters, 2016, 117(12):126401.
[83] BOERO M, PARRINELLO M, TERAKURA K, et al. First-principles molecular-dynamics simulations of a hydrated electron in normal and supercritical water[J]. Physical Review Letters, 2003, 90(22):226403.
[84] MUNDY C J, HUTTER J, PARRINELLO M. Microsolvation and chemical reactivity of sodium and water clusters[J]. Journal of the American Chemical Society, 2000, 122(19):4837-4838.
[85] GOEDECKER S, TETER M, HUTTER J. Separable dual-space Gaussian pseudopotentials[J]. Physical Review B: Condensed Matter, 1996, 54(3):1703-1710.
[86] CWIKLIK L, BUCK U, KULIG W, et al. A sodium atom in a large water cluster: electron delocalization and infrared spectra[J]. The Journal of Chemical Physics, 2008, 128(15):154306.
[87] RAJAGOPAL G, BARNETT R N, LANDMAN U. Metallization of ionic clusters[J]. Physical Review Letters, 1991, 67(6):727.
[88] MARSALEK O, UHLIG F, VANDEVONDELE J, et al. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics[J]. Accounts of Chemical Research, 2012, 45(1):23-32.
[89] YAMAGUCHI K, FUKUI H, FUENO T. Molecular orbital(MO)theory for magnetically interacting organic compounds. ab-initio MO calculations of the effective exchange integrals for cyclophane-type carbene dimers[J]. Chemistry Letters, 1986, 15(4):625-628.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] YANG Jun. Characterization and structural control of metalbased nanomaterials[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 1 -22 .
[2] HE Hai-lun, CHEN Xiu-lan* . Circular dichroism detection of the effects of denaturants and buffers on the conformation of cold-adapted protease MCP-01 and  mesophilic protease BP01[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 23 -29 .
[3] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[4] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[5] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[6] YANG Ying, JIANG Long*, SUO Xin-li. Choquet integral representation of premium functional and related properties on capacity space[J]. J4, 2013, 48(1): 78 -82 .
[7] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[8] DONG Wei-wei. A new method of DEA efficiency ranking for decision making units with independent subsystems[J]. J4, 2013, 48(1): 89 -92 .
[9] REN Min1,2, ZHANG Guang-hui1. Absorbing probabilities of random walks in an independent random  environment convergence in distribution on the half-line[J]. J4, 2013, 48(1): 93 -99 .
[10] GAO Zheng-hui, LUO Li-ping. Philos-type oscillation criteria for third-order nonlinear functional differential equations with distributed delays and damped terms[J]. J4, 2013, 48(4): 85 -90 .