JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (3): 58-61.doi: 10.6040/j.issn.1671-9352.0.2021.696

Previous Articles    

Quantum synchronizable codes from Reed-Solomon codes

WANG Tao, YAN Tong-jiang*, SUN Yu-hua, LIU Qian   

  1. College of Science, China University of Petroleum(East China), Qingdao 266580, Shandong, China
  • Published:2022-03-15

Abstract: A method for constructing quantum synchronizable codes from Reed-Solomon codes is proposed. Certain conditions for these quantum synchronizable codes to reach the upper bound of synchronization capabilities are given. Moreover, these quantum synchronizable codes usually possess optimal error-correcting capability towards bit errors and phase errors.

Key words: quantum synchronizable code, cyclic code, Reed-Solomon code

CLC Number: 

  • O236.2
[1] NIELSEN M, CHUANG I. Quantum computation and quantum information[M]. Cambridge: Cambridge University Press, 2011.
[2] STEANE A. Multiple-particle interference and quantum error correction[J]. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 1996, 452(1954): 2551-2577.
[3] CALDERBANK A, RAINS E, SHOR P, et al. Quantum error correction via codes over GF(4)[J]. IEEE Transactions on Information Theory, 1996, 44(4): 1369-1387.
[4] FUJIWARA Y. Block synchronization for quantum information[J]. Physical Review A, 2013, 87(2): 022344.
[5] FUJIWARA Y, VANDENDRIESSCHE P. Quantum synchronizable codes from finite geometries[J]. IEEE Transactions on Information Theory, 2014, 60(11): 7345-7354.
[6] XIE Yixuan, YUAN Jinhong, FUJIWARA Y. Quantum synchronizable codes from quadratic residue codes and their supercodes[C] //2014 IEEE Information Theory Workshop(ITW 2014). New York: IEEE, 2014: 172-176.
[7] LI Lanqiang, ZHU Shixin, LIU Li. Quantum synchronizable codes from the cyclotomy of order four[J]. IEEE Communications Letters, 2018, 23(1): 12-15.
[8] LUO Lan, MA Zhi, LIN Dongdai. Two new families of quantum synchronizable codes[J]. Quantum Information Processing, 2019, 18(277): 1-18.
[9] SHI Xiaoping, YUE Qin, HUANG Xinmei. Quantum synchronizable codes from the Whitemans generalized cyclotomy[J]. Cryptography and Communications, 2021, 13(4): 727-739.
[10] HUFFMAN W, PLESS V. Fundamental of error-correcting codes[M]. Cambridge: Cambridge University Press, 2003.
[11] GADIOLI G, GUARDIA L. Quantum error correction symmetric, asymmetric, synchronizable, and convolutional codes[M]. [S.l.] : Springer International Publishing, 2020.
[12] LUO Lan, MA Zhi. Non-binary quantum synchronizable codes from repeated-root cyclic codes[J]. IEEE Transactions on Information Theory, 2018, 64(3):1461-1470.
[1] GAO Jian, CAO Yong-lin. Constructing 2-generator quasi-twisted codes over finite fields [J]. J4, 2012, 47(10): 31-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!