JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (3): 85-88.doi: 10.6040/j.issn.1671-9352.0.2020.102
GUO Ji-yun1,2, LI Hai-yan2, GUO Jin2, CAI Bai-guang2*
CLC Number:
[1] ERDÖS P, GALLAI T. Graphs with prescribed degrees of vertices[J]. Mat Lapok, 1960, 11:24-274. [2] CAI Maochen, DENG Xiaotie, ZANG Wenan. Solution to a problem on degree sequences of graphs[J]. Discrete Mathematics, 2000, 219(1/2/3):253-257. [3] GUO Jiyun, YIN Jianhua. A constructive extension of the characterization on potentially Ks, t-bigraphic pairs[J]. Discussiones Mathematicae Graph Theory, 2017, 37(1):251. [4] LAI Chunhui, HU Lili. Potentially Km-G-graphical sequences: a survey[J]. Czechoslovak Mathematical Journal, 2009, 59(4):1059-1075. [5] 李炯生, 尹建华. 极值图论与度序列[J]. 数学进展, 2004, 33(3):273-283. LI Jiongsheng, YIN Jianhua. Extremal graph theory and degree sequences[J]. Advances in Mathematics, 2004, 33(3):273-283. [6] RAO S B. A survey of the theory of potentially P-graphic and forcibly P-graphic degree sequences[M] //Combinatorics and Graph Theory. Berlin: Springer, 1981: 417-440. [7] GARG A, GOEL A, TRIPATHI A. Constructive extensions of two results on graphic sequences[J]. Discrete Applied Mathematics, 2011, 159(17):2170-2174. [8] LOVÁSZ L. The factorization of graphs: II[J]. Acta Mathematica Academiae Scientiarum Hungaricae, 1972, 23(1/2):223-246. |
[1] | ZHANG Min, SI Jian-guo. New construction of solutions for the general second type of Feigenbaum′s functional equations [J]. J4, 2011, 46(4): 34-36. |
[2] | ZHANG Min1, WANG Lian-chi2. The generalization for the second type of Feigenbaum’s functional equations [J]. J4, 2010, 45(6): 56-59. |
|