JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2022, Vol. 57 ›› Issue (11): 21-25.doi: 10.6040/j.issn.1671-9352.0.2021.003
XIE Zhi-hong, HAO Guo-liang*
CLC Number:
[1] YUE Jun, SONG Jiamei. Note on the perfect Roman domination number of graphs[J]. Applied Mathematics and Computation, 2020, 364(1):124685. [2] MA Yuede, CAI Qingqing, YAO Shunyu. Integer linear programming models for the weighted total domination problem[J].Applied Mathematics and Computation, 2019, 358:146-150. [3] WU Pu, JIANG Huiqin, NAZARI-MOGHADDAM S, et al. Independent domination stable trees and unicyclic graphs[J].Mathematics, 2019, 7:820. [4] HAYNES T W, HENNING M A, VOLKMANN L. Graphs with large Italian domination number[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2020, 43(6):4273-4287. [5] GHAREGHANI N, PETERIN I, SHARIFANI P. A note on bipartite graphs whose[1,k] -domination number equal to their number of vertices[J]. Opuscula Mathematica, 2020, 40:375-382. [6] 朱晓颖,逄世友.控制数给定的树的最大离心距离和[J]. 山东大学学报(理学版), 2017, 52(2):30-36. ZHU Xiaoying, PANG Shiyou. On the maximal eccentric distance sum of tree with given domination number[J]. Journal of Shandong University(Natural Science), 2017, 52(2):30-36. [7] AMJADI J, NAZARI-MOGHADDAM S, SHEIKHOLESLAMI S M, et al. An upper bound on the double Roman domination number[J]. Journal of Combinatorial Optimization, 2018, 36:81-89. [8] ZHANG X, LI Z, JIANG H, et al. Double Roman domination in trees[J]. Information Processing Letters, 2018, 134:31-34. [9] HENNING M A, JAFARI RAD N. A characterization of double Roman trees[J]. Discrete Applied Mathematics, 2019, 259:100-111. [10] BEELER R A, HAYNES T W, HEDETNIEMI S T. Double Roman domination[J]. Discrete Applied Mathematics, 2016, 211:23-29. [11] SHAO Zehui, SHEIKHOLESLAMI S M, NAZARI-MOGHADDAM S, et al. Global double Roman domination in graphs[J]. Journal of Discrete Mathematical Sciences and Cryptography, 2019, 22:31-44. [12] ABDOLLAHZADEH AHANGAR H, CHELLALI M, SHEIKHOLESLAMI S M. On the double Roman domination in graphs[J]. Discrete Applied Mathematics, 2017, 232:1-7. |
[1] | SUN Shuang, LIU Hong-xing. The inclusion graph of S-acts [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 121-126. |
[2] | ZHU Hai-yang, GU Yu, LÜ Xin-zhong. New upper bound on the chromatic number of the square of a planar graph [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 94-101. |
[3] | MA Gang. Acyclic list edge coloring of planar graphs with girth #br# ≥ 11 and maximum degree 3 [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 18-23. |
[4] | DING Wei. Acyclic edge coloring of planar graphs without 4-Cycles [J]. J4, 2012, 47(6): 76-79. |
[5] | ZHU Hai-yang1, HOU Li-feng1, CHEN Wei1, Lü Xin-zhong2. The L(p,q)-labeling of planar graphs with girth g(G)≥5 [J]. J4, 2011, 46(8): 95-103. |
[6] | ZHU Hai-yang1, L Xin-zhong2, SHENG Jing-jun1, HANG Dan3 . The L(p,q)-labeling of planar graphs with girth g(G)≥6 [J]. J4, 2011, 46(4): 9-16. |
[7] | LI Shuo,LI Feng,LIANG Feng . The heterochromatic girth in edge-colored graphs [J]. J4, 2008, 43(6): 19-20 . |
[8] | ZHU Xiao-ying,XU Yang,SHI Hong-jun . The 3-choosability of plane graphs without3-, 6-,9- and 10-cycles [J]. J4, 2007, 42(10): 59-62 . |
|