JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (2): 58-62.doi: 10.6040/j.issn.1671-9352.0.2021.669

Previous Articles    

Strongly Ding projective modules over Morita rings

TAN Jin, DI Zhen-xing*   

  1. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2023-02-12

Abstract: This paper constructs a class of strongly Ding projective modules on Morita rings with zero bimodule homomorphisms.

Key words: strongly Ding projective module, Morita ring, Gorenstein projective module

CLC Number: 

  • O153.3
[1] ENOCHS E E, JENDA O M G. Gorenstein injective and projective modules[J]. Mathematische Zeitschrift, 1995, 220(4):611-633.
[2] DING Nanqing, LI Yuanlin, MAO Lixin. Strongly Gorenstein flat modules[J]. J Aust Math Soc, 2009, 86(3):323-338.
[3] GILLESPIE J. Model structures on modules over Ding-Chen rings[J]. Homology, Homotopy and Applications, 2010, 12(1):61-73.
[4] HUANG Chaoling, WU T S. Ding projective and Ding injective dimensions[J]. Int Electron J Algebra, 2015, 18(1):1-20.
[5] MAO LI XING. Ding modules and dimensions over formal triangular matrix rings[J]. ArXiv: 1912.06968.
[6] GAO Nan, PSAROUDAKIS C. Gorenstein homological aspects of monomorphism categories via Morita rings[J]. Algebras and Representation Theory, 2017, 20(2):487-529.
[7] GREEN E L. On the representation theory of rings in matrix form[J]. Pacific J Math, 1982, 100(1):138-152.
[8] ZHANG Pu. Gorenstein projective modules and symmetric recollements[J]. J Algebra, 2013, 388(7):65-80.
[9] ZHANG Pu. Monomorphism categories, cotilting theory, and Gorenstein projective modules[J]. J Algebra, 2011, 339(1):181-202.
[10] KRYLOV P, TUGANBAEV A. Formal matrices[M]. Cham: Springer, 2017: 31-75.
[1] NIU Shao-hua, YANG Gang. n-Gorenstein projective modules over formal triangular matrix rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(10): 44-49.
[2] GUO Hui-ying, YANG Fu-xia, ZHANG Cui-ping. Stability of modules with finite Ext-strongly Ding projective dimensions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(4): 31-38.
[3] ZHAO Zhuang, LIANG Li. Flat bimodules and Gorenstein modules [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(12): 89-92.
[4] ZHAO Yang, ZHANG Wen-hui. Strongly Ding projective and strongly Ding injective modules over formal triangular matrix rings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(10): 37-45.
[5] ZHANG Pu. Gorenstein projective modules [J]. J4, 2009, 44(2): 1-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!