JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (3): 77-84.doi: 10.6040/j.issn.1671-9352.0.2022.304

Previous Articles     Next Articles

A mollification method with a posteriori parameter selection for solving the Cauchy problem of the Helmholtz equation

LI Zhen-ping1,2, YU Ya-hui1*   

  1. 1. Department of Mathematics and Physics, Luoyang Institute of Science and Technology, Luoyang 471023, Henan, China;
    2. College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, Gansu, China
  • Published:2023-03-02

Abstract: In order to restore the stability of the solution, a mollification regularization method with a posteriori selection of regularization parameter based on Gaussian kernel function is proposed. The stability error estimate between the exact solution and its approximation solution is obtained. Numerical experiments are carried out to verify the effectiveness of the proposed method.

Key words: Cauchy problem for the Helmholtz equation, mollification method, posteriori parameter selection, error estimate

CLC Number: 

  • O241.82
[1] REGINSKA T, REGINSKI K. Approximate solution of a Cauchy problem for the Helmholtz equation[J]. Inverse Probl, 2006, 22(3):975-989.
[2] FENG Xiaoli, FU Chuli, CHENG Hao. A regularization method for solving the Cauchy problem for the Helmholtz equation[J]. Appl Math Model, 2011, 35(7):3301-3315.
[3] XIONG Xiangtuan, FU Chuli. Two approximate methods of a Cauchy problem for the Helmholtz equation[J]. Comput Appl Math, 2007, 26(2):285-307.
[4] ZHANG H W, QIN H H, WEI T. A quasi-reversibility regularization method for the Cauchy problem of the Helmholtz equation[J]. Int J Comput Math, 2011, 88(4):839-850.
[5] QIN H H, WEI T. Two regularization methods for the Cauchy problems of the Helmholtz equation[J]. Appl Math Model, 2010, 34(4):947-967.
[6] REGINSKA T. Regularization methods for a mathematical model of laser beams[J]. Eur J Math Comput Appl, 2014, 1(2):39-49.
[7] ZHANG Yuanxiang, FU Chuli, DENG Zhiliang. An a posteriori truncation method for some Cauchy problems associated with Helmholtz-type equations[J]. Inverse Prob Sci Eng, 2013, 21(7):1151-1168.
[8] FU Chuli, FENG Xiaoli, QIAN Zhi. The Fourier regularization for solving the Cauchy problem for the Helmholtz equation[J]. Appl Numer Math, 2009, 59(10):2625-2640
[9] QIAN Ailin, XIONG Xiangtuan, WU Yujiang. On a quasi-reversibility regularization method for a Cauchy problem of the Helmholtz equation[J]. J Comput Appl Math, 2010, 233(8):1969-1979.
[10] XIONG Xiangtuan. A regularization method for a Cauchy problem of the Helmholtz equation[J]. J Comput Appl Math, 2010, 233(8):1723-1732.
[11] HE Shangqin, FENG Xiufang. A mollification regularization method with the Dirichlet kernel for two Cauchy problems of three-dimensional Helmholtz equation[J]. Int J Comput Math, 2020, 97(11):2320-2336.
[12] HE Shangqin, DI Congna, YANG Li. The mollification method based on a modified operator to the ill-posed problem for 3D Helmholtz equation with mixed boundary[J]. Appl Numer Math, 2021, 160:422-435.
[13] LI Zhenping, XU Chao, LAN Man, et al. A mollification method for a Cauchy problem for the Helmholtz equation[J]. Int J Comput Math, 2018, 95(11):2256-2268.
[14] QIAN Zhi, FENG Xiaoli. A fractional Tikhonov method for solving a Cauchy problem of Helmholtz equation[J]. Appl Anal, 2017, 96(10):1656-1668.
[15] DINH N H. A mollification method for ill-posed problems[J]. Numer Math, 1994, 68(4):469-506.
[16] DINH N H, DUC N. Stability results for the heat equation backward in time[J]. J Math Anal Appl, 2009, 353(2):627-641.
[17] MURIO D A. The mollification method and the numerical solution of ill-posed problems[M]. New York: John Wiley and Sons Inc, 1993: 60-130.
[18] YANG Fan, FU Chuli. A mollification regularization method for the inverse spatial-dependent heat source problem[J]. J Comput Appl Math, 2014, 255:555-567.
[19] 邓志亮. 两类不适定问题的正则化方法研究[D]. 兰州: 兰州大学, 2010. DENG Zhiliang. The study of the regularization methods for two classes of ill-posed problems[D]. Lanzhou: Lanzhou University, 2010.
[20] 丁凤霞, 程浩. 椭圆方程柯西问题磨光正则化参数的后验选取[J]. 山东大学学报(理学版), 2018, 53(2):18-24. DING Fengxia, CHENG Hao. A posteriori choice rule for the mollification regularization parameter for the Cauchy problem of an elliptic equation[J]. Journal of Shandong University(Natural Science), 2018, 53(2):18-24.
[21] QIAN Zhi, FENG Xiaoli. Numerical solution of a 2D inverse heat conduction problem[J]. Inverse Probl Sci Eng, 2013, 21(3):467-484.
[1] LI Wei-zhi, LI Wan-shan, LI Jian-liang. Maximum norm error estimate and extrapolation of the ADI-FDTD scheme for plasma model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(9): 96-110.
[2] QI Bin, CHENG Hao. Identification of source term for fractional diffusion-wave equation with Neumann boundary conditions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(6): 64-73.
[3] YANG Cai-jie, SUN Tong-jun. Crank-Nicolson finite difference method for parabolic optimal control problem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(6): 115-121.
[4] ZHENG Rui-rui, SUN Tong-jun. A priori error estimates of finite element methods for an optimal control problem governed by a one-prey and one-predator model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(1): 23-32.
[5] SHI Yan-hua1, SHI Dong-yang2*. The quasi-Wilson nonconforming finite element approximation to  pseudo-hyperbolic equations [J]. J4, 2013, 48(4): 77-84.
[6] WU Zhi-qin1, SHI Dong-wei2. Convergence analysis for nonlinear integro-differential equations with a weakly singular kernel [J]. J4, 2012, 47(8): 60-63.
[7] LI Na, GAO Fu-zheng*, ZHANG Tian-de. An expanded mixed covolume method for Sobolev equations [J]. J4, 2012, 47(6): 34-39.
[8] YU Jin-biao1,2, XI Kai-hua3*, DAI Tao2, LU Tong-chao3, YANG Yao-zhong2, . Convergence of the finite element method for two-phase multi-component flow in porous media [J]. J4, 2012, 47(2): 19-25.
[9] ZHOU Jia-quan, SUN Ying-de, ZHANG Yong-sheng. A nonconforming characteristic finite element method for Burgers equations [J]. J4, 2012, 47(12): 103-108.
[10] QIAO Bao-min, LIANG Hong-liang. Super-convergence analysis of Adini′s finite element for a kind of nonlinear generalized nerve conductive equations [J]. J4, 2011, 46(8): 42-46.
[11] ZHENG Rui-rui, SUN Tong-jun. An upwind-mixed method for the linear Sobolev equation [J]. J4, 2011, 46(4): 23-28.
[12] MA Ning. Orthogonal collocation method for miscible displacement with dispersion [J]. J4, 2011, 46(2): 78-81.
[13] LU Yao1, LI De-sheng2, YANG Yang1. The Fourier spectral approximation for nonlinear SchrÖdinger equation [J]. J4, 2011, 46(1): 119-126.
[14] LI Zhi-tao. The finite difference method of  miscible displacement problems in deformable porous media [J]. J4, 2010, 45(6): 50-55.
[15] . The finite element method for  controlledrelease and spread of solute coupling with fluid velocity in a porous medium [J]. J4, 2009, 44(2): 33-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!