JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (3): 77-84.doi: 10.6040/j.issn.1671-9352.0.2022.304
Previous Articles Next Articles
LI Zhen-ping1,2, YU Ya-hui1*
CLC Number:
[1] REGINSKA T, REGINSKI K. Approximate solution of a Cauchy problem for the Helmholtz equation[J]. Inverse Probl, 2006, 22(3):975-989. [2] FENG Xiaoli, FU Chuli, CHENG Hao. A regularization method for solving the Cauchy problem for the Helmholtz equation[J]. Appl Math Model, 2011, 35(7):3301-3315. [3] XIONG Xiangtuan, FU Chuli. Two approximate methods of a Cauchy problem for the Helmholtz equation[J]. Comput Appl Math, 2007, 26(2):285-307. [4] ZHANG H W, QIN H H, WEI T. A quasi-reversibility regularization method for the Cauchy problem of the Helmholtz equation[J]. Int J Comput Math, 2011, 88(4):839-850. [5] QIN H H, WEI T. Two regularization methods for the Cauchy problems of the Helmholtz equation[J]. Appl Math Model, 2010, 34(4):947-967. [6] REGINSKA T. Regularization methods for a mathematical model of laser beams[J]. Eur J Math Comput Appl, 2014, 1(2):39-49. [7] ZHANG Yuanxiang, FU Chuli, DENG Zhiliang. An a posteriori truncation method for some Cauchy problems associated with Helmholtz-type equations[J]. Inverse Prob Sci Eng, 2013, 21(7):1151-1168. [8] FU Chuli, FENG Xiaoli, QIAN Zhi. The Fourier regularization for solving the Cauchy problem for the Helmholtz equation[J]. Appl Numer Math, 2009, 59(10):2625-2640 [9] QIAN Ailin, XIONG Xiangtuan, WU Yujiang. On a quasi-reversibility regularization method for a Cauchy problem of the Helmholtz equation[J]. J Comput Appl Math, 2010, 233(8):1969-1979. [10] XIONG Xiangtuan. A regularization method for a Cauchy problem of the Helmholtz equation[J]. J Comput Appl Math, 2010, 233(8):1723-1732. [11] HE Shangqin, FENG Xiufang. A mollification regularization method with the Dirichlet kernel for two Cauchy problems of three-dimensional Helmholtz equation[J]. Int J Comput Math, 2020, 97(11):2320-2336. [12] HE Shangqin, DI Congna, YANG Li. The mollification method based on a modified operator to the ill-posed problem for 3D Helmholtz equation with mixed boundary[J]. Appl Numer Math, 2021, 160:422-435. [13] LI Zhenping, XU Chao, LAN Man, et al. A mollification method for a Cauchy problem for the Helmholtz equation[J]. Int J Comput Math, 2018, 95(11):2256-2268. [14] QIAN Zhi, FENG Xiaoli. A fractional Tikhonov method for solving a Cauchy problem of Helmholtz equation[J]. Appl Anal, 2017, 96(10):1656-1668. [15] DINH N H. A mollification method for ill-posed problems[J]. Numer Math, 1994, 68(4):469-506. [16] DINH N H, DUC N. Stability results for the heat equation backward in time[J]. J Math Anal Appl, 2009, 353(2):627-641. [17] MURIO D A. The mollification method and the numerical solution of ill-posed problems[M]. New York: John Wiley and Sons Inc, 1993: 60-130. [18] YANG Fan, FU Chuli. A mollification regularization method for the inverse spatial-dependent heat source problem[J]. J Comput Appl Math, 2014, 255:555-567. [19] 邓志亮. 两类不适定问题的正则化方法研究[D]. 兰州: 兰州大学, 2010. DENG Zhiliang. The study of the regularization methods for two classes of ill-posed problems[D]. Lanzhou: Lanzhou University, 2010. [20] 丁凤霞, 程浩. 椭圆方程柯西问题磨光正则化参数的后验选取[J]. 山东大学学报(理学版), 2018, 53(2):18-24. DING Fengxia, CHENG Hao. A posteriori choice rule for the mollification regularization parameter for the Cauchy problem of an elliptic equation[J]. Journal of Shandong University(Natural Science), 2018, 53(2):18-24. [21] QIAN Zhi, FENG Xiaoli. Numerical solution of a 2D inverse heat conduction problem[J]. Inverse Probl Sci Eng, 2013, 21(3):467-484. |
|