JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (3): 93-100.doi: 10.6040/j.issn.1671-9352.0.2022.405

Previous Articles     Next Articles

Design and realization of a chaotic system based on multiplier

WANG Zhong-lin1,2,3, LIU Shu-tang1   

  1. 1. School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China;
    2. College of Aeronautical Engineering, Binzhou University, Binzhou 256603, Shandong, China;
    3. Shandong Engineering Research Center of Aeronautical Materials and Devices, Binzhou 256603, Shandong, China
  • Published:2023-03-02

Abstract: This paper makes use of the characteristics of resistance and capacitance in series and parallel to propose a method of using the multiplier to realize chaotic system. Using this method, two Lorenz type chaotic systems are realized with one circuit, and Qi chaotic system with three product terms is realized. By changing the resistance value of one of the resistors, different dynamic behaviors can be transformed from single period, double period, four period, multi period, quasi period and single scroll chaos to double scroll chaos. The circuit experiment results and the simulation results of Multism14 software are consistent with the theoretical analysis results. Compared with the original method, the number of components is greatly reduced.

Key words: chaotic system, multiplier, chaotic circuit, Multism 14, operational amplifier

CLC Number: 

  • TN914.42
[1] LORENZ E N. Deterministic nonperiodic flow[J]. Journal of the Atmospheric Sciences, 1963, 20(2):130-141.
[2] CHEN G R, UETA T. Yet another chaotic attractor[J]. International Journal of Bifurcation and Chaos, 1999, 9(7):1465-1466.
[3] LÜ Jinhu, CHEN Guanrong. A new chaotic attractor coined[J]. International Journal of Bifurcation and Chaos, 2002, 12(3):659-661.
[4] LIU C X, LIU T, LIU L, et al. A new chaotic attractor[J]. Chaos, Solitons & Fractals, 2004, 22(5):1031-1038.
[5] QI G Y, CHEN G R, DU S Z, et al. Analysis of a new chaotic system[J]. Physica A: Statistical Mechanics and Its Applications, 2005, 352(2/3/4):295-308.
[6] LIU Y J, YANG Q G. Dynamics of a new Lorenz-like chaotic system[J]. Nonlinear Analysis: Real World Applications, 2010, 11(4):2563-2572.
[7] 王繁珍,齐国元,陈增强,等. 一个新的三维混沌系统的分析、电路实现及同步[J]. 物理学报,2006,55(8):4005-4012. WANG Fanzhen, QI Guoyuan, CHEN Zengqiang, et al. Analysis, circuit implementation and synchronization of a new three-dimensional chaotic system[J]. Acta Physica Sinica, 2006, 55(8):4005-4012.
[8] 闵富红,田恩刚,叶彪明,等. Lorenz混沌系统模块化电路设计与硬件实验[J]. 实验技术与管理,2018,35(4):44-47. MIN Fuhong, TIAN Engang, YE Biaoming, et al. Modular circuit design and hardware experiment of Lorenz chaotic system[J]. Experimental Technology and Management, 2018, 35(4):44-47.
[9] WANG G Y, QIU S S, LI H W, et al. A new chaotic system and its circuit realization[J]. Chinese Physics, 2006, 15(12):2872-2877.
[10] LI C B, SPROTT J C, JOO-CHEN THIO W, et al. A simple memristive jerk system[J]. IET Circuits, Devices & Systems, 2021, 15(4):388-392.
[11] 王忠林,姚福安,李祥峰. 基于FPGA的一个超混沌系统设计与电路实现[J]. 山东大学学报(理学版), 2008, 43(12):93-96. WANG Zhonglin, YAO Fuan, LI Xiangfeng. Design and realization of a hyperchaotic system based FPGA[J]. Journal of Shandong University(Natural Science), 2008, 43(12):93-96.
[12] SONG Y X, YUAN F, LI Y X. Coexisting attractors and multistability in a simple memristive Wien-bridge chaotic circuit[J]. Entropy, 2019, 21(7):678.
[13] JIANG Y C, LI C B, LIU Z H, et al. Simplified memristive Lorenz oscillator[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(7):3344-3348.
[14] BLAKELY J N, ESKRIDGE M B, CORRON N J. A simple Lorenz circuit and its radio frequency implementation[J]. Chaos, 2007, 17(2):023112.
[15] WU J Y, LI C B, MA X, et al. Simplification of chaotic circuits with quadratic nonlinearity[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2022, 69(3):1837-1841.
[1] LI Xin-yu, FAN Hui, LIU Jing-lei. Robust clustering based on adaptive graph regularization and low-rank matrix decomposition [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(8): 21-38.
[2] LIU Hui-li, YANG Tao. Crossed representation categories of multiplier Hopf T-coalgebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(6): 1-7.
[3] JI Xin-rong, HOU Cui-qin, HOU Yi-bin, ZHAO Bin. A distributed training method for L1 regularized kernel machines based on filtering mechanism [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(9): 137-144.
[4] WANG Jie-zhi, LI Hang, WANG Rui, WANG Lu, WANG Yan-chao. A new four-dimensional smooth four-wing hyperchaotic system and its circuit implementation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(11): 104-112.
[5] LU Dao-wei, ZHANG Xiao-hui. Ore extensions of G-cograded multiplier Hopf algebras [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(10): 52-58.
[6] YANG Ye-hong, XIAO Jian*, MA Zhen-zhen. Synchronization and control of a novel fractional-order chaotic system [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(2): 76-83.
[7] ZHAO Pei-xin, ZHOU Xiao-shuang. Restricted statistical inference for partially linear models with error-prone covariates [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(07): 69-74.
[8] YU Li. ε-strongly subdifferential of set-valued mapping and application [J]. J4, 2013, 48(3): 99-105.
[9] ZHANG Cheng-liang1, HU Chun-hua1, WANG Zhong-lin1,2. The design and implementation of chaotic circuit of three automatically switched subsystems [J]. J4, 2012, 47(8): 108-113.
[10] ZHU Cong-xu1, SUN Ke-hui2. A chaos synchronization secure communication system based on a new Lorenz-like attractor [J]. J4, 2011, 46(9): 5-8.
[11] ZHANG Wei-qiang, LIU Yang-zheng*. Generation and circuit implementation of a unified hyperchaotic system [J]. J4, 2011, 46(7): 30-34.
[12] WANG Zhong-lin1, DENG Bin2, HOU Cheng-xi2, YAO Fu-an2. Design and circuit realization of a four-wing Liu chaotic system [J]. J4, 2010, 45(11): 43-46.
[13] WANG Zhong-Lin, YAO Fu-An, LI Xiang-Feng. Design and realization of a hyperchaotic system based FPGA [J]. J4, 2008, 43(12): 93-96.
[14] LIU Ru-jun,CAO Yu-xia,ZHOU Ping . Anti-control for discrete chaos systems by small feedback [J]. J4, 2007, 42(7): 30-32 .
[15] FU Hong-fei . Error analysis of the fictitious domain method for the arabolic problem [J]. J4, 2007, 42(6): 41-45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!