JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (6): 99-106.doi: 10.6040/j.issn.1671-9352.0.2022.214

Previous Articles     Next Articles

Milloux type inequality on holomorphic curves

Fei LI(),Liu YANG*()   

  1. School of Mathematics and Physics, Anhui University of Technology, Maanshan 243032, Anhui, China
  • Received:2022-04-18 Online:2023-06-20 Published:2023-05-23
  • Contact: Liu YANG E-mail:lf19980517@126.com;yangliu6@ahut.edu.cn

Abstract:

Based on the derived holomorphic curves, the Milloux type inequality of holomorphic curves is established, and the Picard type theorem is proved: let $f$ be a holomorphic curve from $\mathbf{C}$ to $P^{n}(\mathbf{C}), \nabla f$ is a derived holomorphic curve of $f$ and $\left\{H_{j}\right\}_{j=1}^{2 n+1}$ be hyperplanes in $P^{n}(\mathbf{C})$ located in general position, if $f$ omits the hyperplane family $\left\{H_{j}\right\}_{j=1}^{n+1}, \nabla f$ omits the hyperplane family $\left\{H_{j}\right\}_{j=n+2}^{2 n+1}$, then $f$ is constant, where $H_{1}, H_{2}, \cdots, H_{n+1}$ are $n+1$ coordinate hyperplanes. And some examples are given to show that the number of hyperplanes cannot be reduced and the coordinate hyperplanes cannot be generalized to arbitrary hyperplanes when $n \geqslant 2$.

Key words: holomorphic curve, derived holomorphic curve, Picard type theorem

CLC Number: 

  • O174.52
1 NEVANLINNA R . Le theorème de Picard-Borel et la théorie des fonctions méromorphes[M]. Paris: Gauthier-Villars, 1929.
2 张广厚. 整函数和亚纯函数理论: 亏值、渐近值和奇异方向[M]. 北京: 科学出版社, 1986: 50.
ZHANG Guanhou . Theory of entire and meromorphic functions: deficient and asymptotic values and singular directions[M]. Beijing: Science Press, 1986: 50.
3 HAYMAN W K . Picard values of meromorphic functions and their derivatives[J]. Ann Math, 1959, 70 (2): 9- 42.
4 TODA N . On extension of the derivative of meromorphic functions to holomorphic curves[J]. Proc Japan Acad, 1994, 70 (6): 159- 164.
5 CARTAN H . Sur les zéros des combinaisons linéaires de p fonctions holomorphes données[J]. Mathematica, 1933, 7, 5- 31.
6 TODA N . On the second fundamental inequality for holomorphic curves[J]. Bull Nagoya Inst Tech, 1999, 50, 123- 135.
7 TODA N . On the order of holomorphic curves with maximal deficiency sum Ⅱ[J]. Proc Japan Acad Ser A Math Sci, 2018, 94 (7): 71- 75.
8 YANG Liu , ZHU Ting . On the defects of holomorphic curves[J]. Bull Korean Math Soc, 2020, 57 (5): 1195- 1204.
9 YE Yasheng , PANG Xuecheng , YANG Liu . An extension of Schwick's theorem for normal families[J]. Annales Polonici Mathematici, 2015, 115 (1): 23- 31.
doi: 10.4064/ap115-1-2
10 刘晓俊, 庞学诚, 杨锦华. 涉及分担超平面的正规定则[J]. 数学年刊A辑, 2021, 42 (2): 171- 178.
LIU Xiaojun , PANG Xuecheng , YANG Jinhua . A criterion of normality concerning shared hyperplanes[J]. Chinese Annals of Mathematics, Series A, 2021, 42 (2): 171- 178.
11 LIU Xiaojun , PANG Xuecheng . Shared hyperplanes and nomal families of holomorphic curves[J]. Int J Math, 2020, 31 (5): 2050037.
doi: 10.1142/S0129167X20500378
12 FUJIMOTO H . Value distribution theory of the Gauss map of minimal surfaces in Rm[M]. Wiesbaden: Aspects of Mathematics, 1993: 108.
13 NOCHKA E I . Defect relations of meromorphic curves (in Russian)[J]. Izv Moldavian Acad Sc for Phy & Math Sc, 1982, 79 (1): 41- 47.
14 RU Min , WONG P M . Integeral points of Pn-{2n+1 hyperplanes in general position}[J]. Invent Math, 1991, 106 (1): 195- 216.
doi: 10.1007/BF01243910
15 RU Min . On a general form of the second main theorem[J]. Transactions of the American Mathematical Society, 1997, 349 (12): 5093- 5105.
16 YANG Lo . Value distribution theory[M]. Berlin: Springer-Verlag, 1993.
[1] GU Yong-yi, KONG Yin-ying. Meromorphic solutions of a class of auxiliary differential equation and its applications [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 81-89.
[2] ZHANG Wei-jie, WANG Xin-li, WANG Han-jie. Uniqueness of differential polynomials of meromorphic functions IM sharing a value [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(8): 90-96.
[3] LIU Man-li, GAO Ling-yun. Meromorphic solutions of a type of system of complex difference equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(10): 34-40.
[4] ZHANG Guo-wei. Radial distribution of Julia sets of derivatives of solutions to complex differential equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(2): 85-88.
[5] QU Jing-jing . Uniqueness of meromorphic functions that share one IM value [J]. J4, 2006, 41(2): 54-58 .
[6] QU Jing-jing . Uniqueness of meromorphic functions with their derivatives [J]. J4, 2007, 42(10): 22-26 .
[7] ZHANG Ji-long and YI Hong-xun . The uniqueness of function derivative that share one CM value [J]. J4, 2006, 41(1): 115-119 .
[8] BIE Rong-jun and WANG Xin-li . Uniqueness theorems of meromorphic functions concerning three shared sets [J]. J4, 2007, 42(8): 30-35 .
[9] CAO Yin-hong,GAO Rui . A unicity theorem on the entire function and its linear differential polynomials [J]. J4, 2007, 42(12): 69-72 .
[10] ZHANG Ji-long . The uniqueness of differential polynomials sharing common values [J]. J4, 2007, 42(6): 61-64 .
[11] XU Rong-xia and WANG Ji-chao . Meromorphic functions sharing a finite set [J]. J4, 2007, 42(5): 5-08 .
[12] XU Jun-feng and ZHANG Zhan-liang . Derivatives of meromorphic functions concerning fix-points and polynomials [J]. J4, 2007, 42(5): 1-04 .
[13] SHI Xin-hua. Uniqueness of meromorphic functions and differential polynomials sharing two values IM [J]. J4, 2013, 48(10): 82-85.
[14] LI Xiao-min, WU Cong-cong. Uniqueness of meromorphic functions sharing four distinct finite values with L-functions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(2): 1-8.
[15] YANG Qi. Transcendental solutions of two types of systems of complex differential-difference equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(12): 25-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[2] YANG Yong-wei1, 2, HE Peng-fei2, LI Yi-jun2,3. On strict filters of BL-algebras#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 63 -67 .
[3] LI Min1,2, LI Qi-qiang1. Observer-based sliding mode control of uncertain singular time-delay systems#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 37 -42 .
[4] LUO Si-te, LU Li-qian, CUI Ruo-fei, ZHOU Wei-wei, LI Zeng-yong*. Monte-Carlo simulation of photons transmission at alcohol wavelength in  skin tissue and design of fiber optic probe[J]. J4, 2013, 48(1): 46 -50 .
[5] TIAN Xue-gang, WANG Shao-ying. Solutions to the operator equation AXB=C[J]. J4, 2010, 45(6): 74 -80 .
[6] HUO Yu-hong, JI Quan-bao. Synchronization analysis of oscillatory activities in a biological cell system[J]. J4, 2010, 45(6): 105 -110 .
[7] TANG Feng-qin1, BAI Jian-ming2. The precise large deviations for a risk model with extended negatively upper orthant dependent claim  sizes[J]. J4, 2013, 48(1): 100 -106 .
[8] CHENG Zhi1,2, SUN Cui-fang2, WANG Ning1, DU Xian-neng1. On the fibre product of Zn and its property[J]. J4, 2013, 48(2): 15 -19 .
[9] TANG Xiao-hong1, HU Wen-xiao2*, WEI Yan-feng2, JIANG Xi-long2, ZHANG Jing-ying2, SHAO Xue-dong3. Screening and biological characteristics studies of wide wine-making yeasts[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 12 -17 .
[10] MENG Xiang-bo1, ZHANG Li-dong1, DU Zi-ping2. Investment and reinsurance strategy for insurers under #br# mean-variance criterion with jumps#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 36 -40 .