JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (8): 73-81.doi: 10.6040/j.issn.1671-9352.0.2021.782

Previous Articles     Next Articles

Steady-state solutions of a Holling type Ⅱ competition model in heterogeneous environment

Zipeng HE(),Yaying DONG*()   

  1. School of Science, Xi’an Polytechnic University, Xi’an 710048, Shaanxi, China
  • Received:2021-12-02 Online:2023-08-20 Published:2023-07-28
  • Contact: Yaying DONG E-mail:1007044505@qq.com;dongyaying@xpu.edu.cn

Abstract:

The steady-state solutions of a competitive model with Holling type Ⅱ functional response function in heterogeneous environment is investigated. Using the spectral theory of linear operators and comparison principle of parabolic equations, the global asymptotic stability of the trivial and semi-trivial solutions of the model is obtained, and the sufficient conditions for the competitive repulsion of two species are derived. With the help of topological degree theory, the sufficient conditions for the existence of positive steady-state solutions are established, which gives the sufficient conditions for the coexistence of the two species.

Key words: competitive model, Holling typeⅡ, heterogeneous environment, stability, degree theory

CLC Number: 

  • O175.26
1 LOTKA A J . Elements of physical biology[M]. Baltimore: Williams & Wilkins, 1925.
2 VOLTERRA V . Variazioni e fluttuazioni del numero d'individui in specie animali conviventi[J]. Nature, 1926, 118, 558- 560.
doi: 10.1038/118558a0
3 GAUSE G F . The struggle for existence[M]. Baltimore: Hafner, 1934.
4 HARDIN G . The competitive exclusion principle[J]. Science, 1960, 131 (3409): 1292- 1297.
doi: 10.1126/science.131.3409.1292
5 NUNNEY L . Density compensation, isocline shape and single-level competition models[J]. Journal of Theoretical Biology, 1980, 86 (2): 323- 349.
doi: 10.1016/0022-5193(80)90010-7
6 ZHANG Zhibin . Mutualism or cooperation among competitors promotes coexistence and competitive ability[J]. Ecological Modelling, 2003, 164 (2/3): 271- 282.
7 CASTILLO-ALVINO H , MARVÁ M . The competition model with Holling type Ⅱ competitive response to interfering time[J]. Journal of Biological Dynamics, 2020, 14 (1): 222- 244.
doi: 10.1080/17513758.2020.1742392
8 ALLEN L J S , BOLKER B M , LOU Yuan , et al. Asymptotic profiles of the steady states for an SIS epidemic reaction diffusion model[J]. Discrete and Continuous Dynamical Systems, 2008, 21 (1): 1- 20.
doi: 10.3934/dcds.2008.21.1
9 叶其孝, 李正元, 王明新, 等. 反应扩散方程引论[M]. 2版 北京: 科学出版社, 2011.
YE Qixiao , LI Zhengyuan , WANG Mingxin , et al. Introduction to reaction diffusion equations[M]. 2nd ed Beijing: Science Press, 2011.
10 LI Shanbing , XIAO Yanni , DONG Yaying . Diffusive predator-prey models with fear effect in spatially heterogeneous environment[J]. Electronic Journal of Differential Equations, 2021, 2021 (70): 1- 31.
11 RUAN Weihua , FENG Wei . On the fixed point index and multiple steady-state solutions of reaction-diffusion systems[J]. Differential and Integral Equations, 1995, 8 (2): 371- 392.
[1] WANG Yadi, YUAN Hailong. Hopf bifurcation analysis in the Lengyel-Epstein reaction diffusion system with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 92-103.
[2] NI Yun, LIU Xiping. Existence and Ulam stability for positive solutions of conformable fractional coupled systems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 82-91.
[3] HU Yuwen, XU Jiucheng, ZHANG Qianqian. Lyapunov stability of decision evolution set [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(7): 52-59.
[4] LIU Yun, ZHU Pengjun, CHEN Luyao, SONG Kai. Optimization of blockchain sharding by profit incentive algorithm based on edge computing [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(7): 88-96.
[5] HUANG Yu, GAO Guang-hua. Compact difference schemes for the fourth-order parabolic equations with the third Dirichlet boundary [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(4): 16-28.
[6] GUO Gaihui, WANG Jingjing, LI Wangrui. Hopf bifurcation of a vegetation-water reaction-diffusion model with time delay [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 32-42.
[7] LI Yonghua, ZHANG Cunhua. Stability of a single population delayed reaction-diffusion model with Dirichlet boundary condition [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 122-126.
[8] CHEN Gang, ZHANG Rui. Dynamics of a two-strain co-infection epidemic model with vaccination [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 84-96.
[9] LI Lei, YE Yongsheng. Exponential stability of reaction-diffusion Cohen-Grossberg neural networks with Dirichlet boundary conditions [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 67-74.
[10] CAO Qian, LI Yanling, SHAN Weihua. Dynamics of a reaction-diffusion predator-prey model incorporating prey refuge and fear effect [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 43-53.
[11] LIU Wenyan, QIAO Shuai, GAO Chenghua. Global dynamics analysis of a class of Filippov-type HR neuron model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(10): 13-23.
[12] LI Xiao-wei, LI Gui-hua. Dynamic behaviors analysis of COVID-19 model with environmental virus effects [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(1): 10-15.
[13] HUO Lin-jie, ZHANG Cun-hua. Stability and Hopf bifurcation of diffusive predator-prey system with Holling-Ⅲ type functional response [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(1): 16-24.
[14] SUN Chun-jie, ZHANG Cun-hua. Stability and Turing instability in the diffusive Beddington-DeAngelis-Tanner predator-prey model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(9): 83-90.
[15] SU Xiao-yan, CHEN Jing-rong, YIN Hui-ling. Generalized interval-valued Pythagorean triangular fuzzy aggregation operator and application in decision making [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(8): 77-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[2] YANG Yong-wei1, 2, HE Peng-fei2, LI Yi-jun2,3. On strict filters of BL-algebras#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 63 -67 .
[3] LI Min1,2, LI Qi-qiang1. Observer-based sliding mode control of uncertain singular time-delay systems#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 37 -42 .
[4] MAO Ai-qin1,2, YANG Ming-jun2, 3, YU Hai-yun2, ZHANG Pin1, PAN Ren-ming1*. Study on thermal decomposition mechanism of  pentafluoroethane fire extinguishing agent[J]. J4, 2013, 48(1): 51 -55 .
[5] LI Yong-ming1, DING Li-wang2. The r-th moment consistency of estimators for a semi-parametric regression model for positively associated errors[J]. J4, 2013, 48(1): 83 -88 .
[6] DONG Li-hong1,2, GUO Shuang-jian1. The fundamental theorem for weak Hopf module in  Yetter-Drinfeld module categories[J]. J4, 2013, 48(2): 20 -22 .
[7] TANG Feng-qin1, BAI Jian-ming2. The precise large deviations for a risk model with extended negatively upper orthant dependent claim  sizes[J]. J4, 2013, 48(1): 100 -106 .
[8] CHENG Zhi1,2, SUN Cui-fang2, WANG Ning1, DU Xian-neng1. On the fibre product of Zn and its property[J]. J4, 2013, 48(2): 15 -19 .
[9] TANG Xiao-hong1, HU Wen-xiao2*, WEI Yan-feng2, JIANG Xi-long2, ZHANG Jing-ying2, SHAO Xue-dong3. Screening and biological characteristics studies of wide wine-making yeasts[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 12 -17 .
[10] HE Hai-lun, CHEN Xiu-lan* . Circular dichroism detection of the effects of denaturants and buffers on the conformation of cold-adapted protease MCP-01 and  mesophilic protease BP01[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2013, 48(1): 23 -29 .