JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2023, Vol. 58 ›› Issue (11): 35-44.doi: 10.6040/j.issn.1671-9352.0.2022.096
Previous Articles Next Articles
CLC Number:
1 | 甘犁, 尹志超, 谭继军. 中国家庭金融调查报(2014)[M]. 成都: 西南财经大学出版社, 2015. |
GAN Li , YIN Zhichao , TAN Jijun . China household finance survey report(2014)[M]. Chengdu: Southwestern University of Finance and Economics Press, 2015. | |
2 | 吴文生, 李硕, 谭常春, 等. 中国家庭风险资产配置的理论与实证: 基于信息不确定性视角下的研究[J]. 系统工程理论与实践, 2022, 42 (1): 60- 75. |
WU Wensheng , LI Shuo , TAN Changchun , et al. The theory and evidence of Chinese household risk asset allocation from the perspective of information uncertainty[J]. Systems Engineering: Theory and Practice, 2022, 42 (1): 60- 75. | |
3 |
KOENKER R , BASSETT G . Regression quantiles[J]. Econometrica, 1978, 46 (1): 33- 50.
doi: 10.2307/1913643 |
4 |
POWELL J L . Censored regression quantiles[J]. Journal of Econometrics, 1986, 32 (1): 143- 155.
doi: 10.1016/0304-4076(86)90016-3 |
5 |
PORTNOY S . Censored regression quantiles[J]. Journal of the American Statistical Association, 2003, 98 (464): 1001- 1012.
doi: 10.1198/016214503000000954 |
6 | 刘生龙. 教育和经验对中国居民收入的影响: 基于分位数回归和审查分位数回归的实证研究[J]. 数量经济技术经济研究, 2008, 4, 75- 85. |
LIU Shenglong . The impact of education and experience on residents' income in China: empirical research based on quantile regression and review quantile regression[J]. Journal Quantitative and Technical Economics, 2008, 4, 75- 85. | |
7 | FRUMENTO P , BOTTAI M . An estimating equation for censored and truncated quantile regression[J]. Computational Statistics & Data Analysis, 2017, 113, 53- 63. |
8 | 张倩倩, 郑茜, 王纯杰, 等. 删失分位数回归在医疗费用中的应用[J]. 数理统计与管理, 2018, 37 (6): 1050- 1062. |
ZHANG Qianqian , ZHENG Xi , WANG Chunjie , et al. Application of censored quantile regression in medical cost[J]. Journal of Applied Statistics and Management, 2018, 37 (6): 1050- 1062. | |
9 | 李忠桂, 何书元. 右删失数据下分位数回归的光滑经验似然检验[J]. 应用概率统计, 2019, 35 (2): 153- 164. |
LI Zhonggui , HE Shuyuan . Smoothed empirical likelihood testing for quantile regression models under right censorship[J]. Chinese Journal of Applied Probability and Statistics, 2019, 35 (2): 153- 164. | |
10 | KIM M , LEE S . Nonlinear expectile regression with application to Value-at-Risk and expected shortfall estimation[J]. Computational Statistics & Data Analysis, 2016, 94, 1- 19. |
11 | XIE Shangyu , ZHOU Yong , WAN A T K . A varying coefficient expectile model for estimating value at risk[J]. Journal of Business & Economic Statistics, 2014, 32 (4): 576- 592. |
12 | 刘晓倩, 周勇. 风险度量半参数变系数符合Expectile回归模型及应用[J]. 系统工程理论与实践, 2020, 40 (8): 2176- 2192. |
LIU Xiaoqian , ZHOU Yong . The semiparametric varying-coefficient composite expectile regression model in risk measurement and its application[J]. Systems Engineering: Theory & Practice, 2020, 40 (8): 2176- 2192. | |
13 |
MUGGEO V M R . Estimating regression models with unknown break-points[J]. Statistics in Medicine, 2003, 22 (19): 3055- 3071.
doi: 10.1002/sim.1545 |
14 | HANSEN B E . Regression kink with an unknown threshold[J]. Journal of Business & Economic Statistics, 2017, 35 (2): 228- 240. |
15 |
ZHANG Feipeng , LI Qunhua . Robust bent line regression[J]. Journal of Statistical Planning and Inference, 2017, 185, 41- 55.
doi: 10.1016/j.jspi.2017.01.001 |
16 |
LI Chenxi , WEI Ying , CHAPPELL R , et al. Bent line quantile regression with application to an allometric study of land mammals' speed and mass[J]. Biometrics, 2011, 67 (1): 242- 249.
doi: 10.1111/j.1541-0420.2010.01436.x |
17 | ZHANG Feipeng , LI Qunhua . A continuous threshold expectile model[J]. Computational Statistics & Data Analysis, 2017, 116, 49- 66. |
18 |
ZHOU Xiaoying , ZHANG Feipeng . Bent line quantile regression via a smoothing technique[J]. Statistical Analysis and Data Mining: The ASA Data Science Journal, 2020, 13 (3): 216- 228.
doi: 10.1002/sam.11453 |
19 | SILVERMAN B W . Density estimation for statistics and data analysis[M]. London: Chapman & Hall, 1986. |
20 | 王小刚, 李冰. 含多个结构突变的分段线性Tobit回归模型及应用[J]. 统计与决策, 2021, 37 (19): 21- 25. |
WANG Xiaogang , LI Bing . A piecewise linear Tobit regression model with multiple structural mutations and its application[J]. Statistics & Decision, 2021, 37 (19): 21- 25. | |
21 | 李实, 魏众, 古斯塔夫森B. 中国城镇居民的财产分配[J]. 经济研究, 2000, (3): 16- 23. |
LI Shi , WEI Zhong , GUSTAFSSON B . Distribution of wealth among urban township households in China[J]. Economic Research Journal, 2000, 35 (3): 16- 23. | |
22 |
BROWN S , TAYLOR K . Household debt and financial assets: evidence from Germany, Great Britain and the USA[J]. Journal of the Royal Statistical Society (Series A: Statistics in Society), 2008, 171 (3): 615- 643.
doi: 10.1111/j.1467-985X.2007.00531.x |
23 | 牛树海, 杨梦瑶. 中国区域经济差距的变迁及政策调整建议[J]. 区域经济评论, 2020, 2, 37- 43. |
NIU Shuhai , YANG Mengyao . Changes and policy adjustment suggestions of regional economic disparity in China[J]. Regional Economic Review, 2020, 2, 37- 43. | |
24 | KOENKER R . Quantile regression[M]. New York: Cambridge University Press, 2005. |
25 | HUBER P. The behavior of maximum likelihood estimates under nonstandard conditions[C]// Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Berkeleg, USA: University of California Press, 1967, 1: 221-233. |
26 | HE Xuming , SHAO Qiman . A general Bahadur representation of M-estimators and its application to linear regression with nonstochastic designs[J]. The Annals of Statistics, 1996, 24 (6): 2608- 2630. |
[1] | REN Peng-cheng, XU Jing, LI Xin-min. Interval estimation of VaR [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 85-90. |
[2] | WANG Xiao-gang, LI Bing. Piecewise linear Tobit regression model estimation based on kernel function method [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(6): 1-9. |
|