JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (1): 62-71.doi: 10.6040/j.issn.1671-9352.0.2023.043

Previous Articles     Next Articles

Power allocation algorithm for CR-NOMA based on adaptive bacterial foraging optimization strategy

Yi PENG1,2(),Xiaolin MA1,Qingqing YANG1,*()   

  1. 1. School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
    2. Yunnan Key Laboratory of Computer Technology Application, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
  • Received:2023-02-08 Online:2024-01-20 Published:2024-01-19
  • Contact: Qingqing YANG E-mail:527037928@qq.com;1016188826@qq.com

Abstract:

A power allocation algorithm based on an adaptive bacterial foraging optimization strategy is proposed to aim at the problem of low spectrum utilization of cognitive radio non-orthogonal multiple access (CR-NOMA) system with underlay mode in multiple primary and secondary user scenarios, Firstly, the joint user matching is carried out, and the secondary user grouping problem is equivalent to the secondary user-subchannel bidirectional dynamic matching problem. Secondly, the power scale factor vector of the secondary user is constructed and mapped into the position vector of the bacterial individual, and the bacterial swimming step and rotation direction are improved in the trend operation. In the replication operation, the differential evolution algorithm is used to perform mutation selection on the first half of the high-quality solutions. In the migration operation, the migration range is defined, and the adaptive migration probability is used to speed up the process of finding the best position vector. Finally, the optimal power scaling factor is obtained to maximize the total throughput of the system. The results show that compared with the hierarchical pairing power allocation (HPPA) algorithm and the CR-OMA algorithm, the proposed algorithm can effectively accelerate the convergence speed, enhance the global optimization ability, and have better system performance.

Key words: cognitive radio, non-orthogonal multiple access, power allocation, bacterial foraging

CLC Number: 

  • TN929.5

Fig.1

System model"

Table 1

Simulation parameter settings"

仿真参数 数值
小区半径/m 500
系统带宽/MHz 5
噪声功率谱密度/(dBm·Hz-1) -174
路径损耗系数 2
电路消耗功率/W 1
次用户与认知基站最小距离/m 40
次用户间最小距离/m 30
次用户数量 10~60
主用户发送功率/dBm 30
主用户数量 10

Fig.2

Relationship between total secondary user throughput and number of secondary users"

Fig.3

Relationship between fairness index of secondary users and power of cognitive base station"

Fig.4

Relationship between average system energy efficiency and number of secondary users"

Fig.5

Relationship between total secondary user throughput and cognitive base station power"

1 CHEN Hangtong . Research on 5G key technologies and challenges[J]. Journal of Physics: Conference Series, 2021, (1): 16- 18.
doi: 10.3969/j.issn.1003-6148.2021.01.005
2 YUAN Yazhou , LI Zhijie , LIU Zhixin , et al. Douple deep q network based distributed resourse matching algorithm for D2D communication[J]. IEEE Transactions on Vehicular Technology, 2022, 71 (1): 984- 993.
doi: 10.1109/TVT.2021.3130159
3 LEANH T , TRAN N H , SAAD W , et al. Matching theory for distributed user association and resource allocation in cognitive femtocell network[J]. IEEE Transactions on Vehicular Technology, 2017, 66 (9): 8413- 8428.
doi: 10.1109/TVT.2017.2689795
4 FANG Fang , CHENG Julian , DING Zhiguo , et al. Energy efficient resource optimization for a downlink NOMA heterogeneous small-cell network[J]. IEEE Transactions on Communications, 2020, 68 (6): 3766- 3781.
doi: 10.1109/TCOMM.2020.2979971
5 LÜ Lu , YANG Long , JIANG Hai , et al. When NOMA meets multiuser cognitive radio: opportunistic cooperation and user scheduling[J]. IEEE Transactions on Vehicular Technology, 2018, 67 (7): 6679- 6684.
doi: 10.1109/TVT.2018.2805638
6 LIU Yuanwei , DING Zhiguo , YUAN Jinhong , et al. Nonorthogonal multiple access in large scale underlay cognitive radio networks[J]. IEEE Transactions on Vehicular Technology, 2016, 65 (12): 10152- 10157.
doi: 10.1109/TVT.2016.2524694
7 XU Lei , XING Hong , DENG Yansha , et al. Fairness-aware throughput maximization for underlying cognitive NOMA networks[J]. IEEE Systems Journal, 2021, 15 (2): 1881- 1892.
doi: 10.1109/JSYST.2020.2997695
8 LI Suoping , LIANG Wenwu , YANG Nana , et al. Two-stage adaptive relay selection and power allocation strategy for cooperative CR-NOMA networks in underlay spectrum sharing[J]. Applied Sciences, 2021, 11 (21): 10433.
doi: 10.3390/app112110433
9 ZENG M, TSIROPOULOS G I, YADAV A, et al. A two-phase power allocation scheme for CRNs employing NOMA[C]//2017 IEEE Global Communications Conference. New York: ACM, 2017: 1-6.
10 时安谊, 杨震. 针对NOMA和CR网络的功率分配方法[J]. 信号处理, 2019, 35 (7): 1224- 1234.
SHI Anyi , YANG Zhen . Power allocation method for NOMA and CR networks[J]. Journal of Signal Processing, 2019, 35 (7): 1224- 1234.
11 苗丰满, 张海军, 张永刚, 等. 采用无线携能技术的中继辅助CR-NOMA系统能效分析[J]. 国防科技大学学报, 2022, 44 (4): 198- 203.
MIAO Fengman , ZHANG Haijun , ZHANG Yonggang , et al. Energy efficiency analysis of relay-assisted CR-NOMA system using wireless energy carrying technology[J]. Journal of National University of Defence Technology, 2022, 44 (4): 198- 203.
12 MAO Sun , LENG Supeng , HU Jie , et al. Power minimization resource allocation for underlay MISO-NOMA SWIPT systems[J]. IEEE Access, 2019, 7, 17247- 17255.
doi: 10.1109/ACCESS.2019.2892321
13 HU Changjie , LI Quanzhong , YANG Liang , et al. Joint power allocation and collaborative beamforming for physical layer security in underlay CR NOMA relay systems[J]. Physical Communication, 2021, 48, 101442.
doi: 10.1016/j.phycom.2021.101442
14 SIAVASH B , RAYMOND H Y L , ZHU H , et al. Distributed user association and femtocell allocation in heterogeneous wireless networks[J]. IEEE Trans Communications, 2014, 62 (8): 3027- 3043.
doi: 10.1109/TCOMM.2014.2339313
15 PASSINO K M . Biomimicry of bacterial foraging for distributed optimization and control[J]. IEEE Control Systems Magazine, 2002, 22 (3): 52- 67.
doi: 10.1109/MCS.2002.1004010
16 HOU Ying , WU Yilin , HAN Honggui . Multistate-constrained multi-objective differential evolution algorithm with variable neighborhood strategy[J]. IEEE Transactions on Cybernetics, 2023, 53 (7): 4459- 4472.
doi: 10.1109/TCYB.2022.3189684
17 李珺, 党建武, 卜锋. 细菌觅食优化算法的研究与改进[J]. 计算机仿真, 2013, 30 (4): 344- 347.
LI Jun , DANG Jianwu , BU Feng . Research and improvement of bacterial foraging optimization algorithm[J]. Computer Simulation, 2013, 30 (4): 344- 347.
18 AI-ABBASI Z Q, SO D K C. User-pairing based non-orthogonal multiple access(NOMA) system[C]//2016 IEEE the 83rd Vehicular Technology Conference(VTC Spring), Piscataway: IEEE, 2016: 1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] DING Chao1, 2, YUAN Chang-an1, 3, QIN Xiao1, 3. A prediction algorithm for multi-data streams  based on GEP[J]. J4, 2010, 45(7): 50 -54 .
[2] ZHANG De-yu,ZHAI Wen-guang . [J]. J4, 2006, 41(5): 4 -07 .
[3] ZENG Weng-fu1, HUANG Tian-qiang1,2, LI Kai1, YU YANG-qiang1, GUO Gong-de1,2. A local linear emedding agorithm based on harmonicmean geodesic kernel[J]. J4, 2010, 45(7): 55 -59 .
[4] YI Chao-qun, LI Jian-ping, ZHU Cheng-wen. A kind of feature selection based on classification accuracy of SVM[J]. J4, 2010, 45(7): 119 -121 .
[5] SUN Liang-ji,JI Guo-xing . Jordan(α,β)-derivations and generalized Jordan(α,β)-derivations on upper triangular matrix algebras[J]. J4, 2007, 42(10): 100 -105 .
[6] ZOU Guo-ping1, MA Ru-ning1, DING Jun-di2, ZHONG Bao-jiang3. Image retrieval based on saliency weighted color and texture[J]. J4, 2010, 45(7): 81 -85 .
[7] CHEN Li . The robust fault diagnosis filter design for uncertain singular systems[J]. J4, 2007, 42(7): 62 -65 .
[8] GUO Lan-lan1,2, GENG Jie1, SHI Shuo1,3, YUAN Fei1, LEI Li1, DU Guang-sheng1*. Computing research of the water hammer pressure in the process of #br# the variable speed closure of valve based on UDF method[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 27 -30 .
[9] SHI Kai-quan. P-information law intelligent fusion and soft information #br# image intelligent generation[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(04): 1 -17 .
[10] ZHANG Ling ,ZHOU De-qun . Research on the relationships among the λ fuzzy measures, Mbius representation and interaction representation[J]. J4, 2007, 42(7): 33 -37 .