JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (8): 67-76.doi: 10.6040/j.issn.1671-9352.0.2023.341

•   • Previous Articles     Next Articles

Barycentric interpolation collocation method for solving the small-amplitude long-wave scheme generalized BBM-KdV equation

Xiumin LYU1(),Qian GE2,*(),Jin LI2   

  1. 1. School of Science, Shandong Jiaotong University, Jinan 250357, Shandong, China
    2. School of Science, Shandong Jianzhu University, Jinan 250101, Shandong, China
  • Received:2023-08-04 Online:2024-08-20 Published:2024-07-31
  • Contact: Qian GE E-mail:lvxiumin@sdjtu.edu.cn;geqian@sdjzu.edu.cn

Abstract:

The barycentric interpolation collocation method is applied to solve the small-amplitude long-wave scheme generalized Benjamin-Bona-Mahony(BBM)-Korteweg-de Vries (KdV) equation in the small amplitude long wave scheme. By the direct linearization method, the nonlinear term ηpηx in the equation is converted into a linear term. Unknown functions of BBM-KdV equation is approximated by the barycentric interpolation basis function. The matrix equation of the generalized BBM-KdV equation is obtained by discretized the generalized BBM-KdV equation in the space-time domain, and the convergence analysis is carried out. The effectiveness and numerical accuracy of the barycentric interpolation collocation method is verified by numerical example, and the calculation accuracy can reach the order of 10-8.

Key words: small-amplitude long-wave, generalized BBM-KdV equation, barycentric interpolation, collocation method

CLC Number: 

  • O241

Table 1

The maximum absolute error calculated by two types of collocation method for different types of nodes (x ∈ [-10, 10], t ∈ [0, 10], α=00.05)"

m×n $ E_{\mathrm{r} \text { max }}^{\mathrm{c}}$ $ E_{\mathrm{r} \text { max }}^{\mathrm{d}}$ $ E_{\mathrm{l} \text { max }}^{\mathrm{c}}$ $ E_{\mathrm{l} \text { max }}^{\mathrm{d}}$ p
15×10 4.000 2×10-11 1.576 8×10-10 2.553 6×10-13 1.815 1×10-12
15×20 2.591 3×10-12 1.789 5×10-11 5.999 5×10-14 7.877 6×10-12 1
25×20 1.220 4×10-15 3.236 9×10-12 1.648 0×10-16 7.270 3×10-09
15×10 7.066 4×10-11 2.966 8×10-10 2.445 5×10-13 1.235 5×10-12
15×20 2.653 5×10-12 1.954 0×10-11 3.816 4×10-14 1.203 2×10-10 3
25×20 1.815 2×10-14 7.216 8×10-11 4.052 3×10-15 3.418 9×10-08

Table 2

The maximum absolute error and relative error calculated by two types of collocation method in different space-time domains (a=0.05, p=3, mn=45×30)"

空间域 时间域 Er maxc El maxc Rrerc Rlerc
[-10, 10] [0, 10] 4.053 2×10-12 1.458 6×10-14 4.249 2×10-12 2.169 1×10-14
[0, 15] 4.976 1×10-12 1.136 6×10-14 4.858 0×10-12 1.913 8×10-14
[0, 20] 4.405 3×10-12 9.756 1×10-15 3.231 7×10-12 1.747 2×10-14
[0, 25] 2.716 6×10-12 6.800 1×10-15 2.679 5×10-12 1.569 5×10-14
[0, 30] 2.655 5×10-12 6.966 6×10-15 2.426 5×10-12 1.108 4×10-14
[-20, 20][0, 10] 3.365 1×10-12 1.038 1×10-14 4.559 9×10-12 2.045 1×10-14
[0, 15] 2.632 0×10-12 9.131 6×10-15 2.431 4×10-12 1.879 2×10-14
[0, 20] 8.674 5×10-12 1.013 1×10-14 1.037 9×10-11 1.822 8×10-14
[0, 25] 3.724 0×10-12 9.992 0×10-15 5.183 6×10-12 2.275 2×10-14
[0, 30] 3.742 9×10-12 7.993 6×10-15 4.067 0×10-12 1.663 0×10-14
[-30, 30][0, 10] 1.959 0×10-12 1.755 5×10-14 2.696 9×10-12 2.863 9×10-14
[0, 15] 2.061 0×10-12 7.875 6×10-15 2.231 7×10-12 1.856 6×10-14
[0, 20] 4.882 6×10-12 6.855 6×10-15 6.085 3×10-12 1.787 9×10-14
[0, 25] 4.124 1×10-12 7.841 0×10-15 5.690 9×10-12 1.616 8×10-14
[0, 30] 2.750 3×10-12 1.020 0×10-14 3.798 8×10-12 2.205 6×10-14

Table 3

The maximum absolute error calculated by two types of collocation method in different numbers of nodes (a=0.05, x ∈ [-30, 30], t ∈ [0, 10])"

m×n p=1 p=2 p=3
Er maxc El maxc Er maxc El maxc Ermaxc El maxc
35×25 3.774 8×10-14 5.665 6×10-15 2.602 1×10-14 3.934 4×10-15 1.317 8×10-13 9.839 4×10-15
40×25 1.026 4×10-14 3.024 9×10-16 2.691 0×10-13 3.840 7×10-15 6.600 6×10-13 6.633 6×10-15
45×25 5.688 7×10-14 4.651 2×10-16 4.350 8×10-13 6.272 8×10-15 1.329 8×10-12 1.404 4×10-14
50×25 6.026 3×10-13 2.958 8×10-16 6.728 9×10-12 3.639 4×10-15 1.286 3×10-11 1.280 9×10-14
45×35 1.617 2×10-13 1.234 9×10-15 8.871 1×10-13 1.030 1×10-14 3.281 0×10-12 2.771 4×10-14
45×40 2.527 6×10-13 1.298 0×10-15 1.876 9×10-12 1.202 9×10-14 4.171 4×10-12 3.194 7×10-14
45×45 1.968 2×10-13 1.708 7×10-15 5.312 9×10-12 1.731 9×10-14 1.563 3×10-11 4.436 7×10-14
45×50 2.228 7×10-12 1.855 7×10-15 1.023 2×10-11 1.806 9×10-14 2.992 7×10-11 3.834 4×10-14

Fig.1

Numerical solution calculated by barycentric interpolation collocation method and solitary wave solution for equation"

Fig.2

The maximum error distribution of two types of collocation"

Table 4

The maximum absolute error calculated bybarycentric lagrange interpolation collocation method with different parameters a and p (mn=45×30)"

空间域 时间域 a=0.05, p=1 a=0.1, p=1 a=0.1, p=3
[-10, 10][0, 10] 6.539 9×10-16 2.302 0×10-15 2.861 6×10-14
[0, 15] 4.566 7×10-16 1.486 7×10-15 1.695 9×10-14
[0, 20] 3.937 8×10-16 7.580 7×10-16 9.478 5×10-15
[0, 25] 4.352 0×10-16 2.086 5×10-14 1.280 9×10-14
[0, 30] 2.693 2×10-16 6.853 5×10-13 1.099 4×10-13
[-20, 20][0, 10] 5.299 6×10-16 1.749 6×10-14 1.018 6×10-14
[0, 15] 3.987 7×10-16 1.673 3×10-14 1.342 7×10-14
[0, 20] 3.664 6×10-16 1.651 8×10-14 1.960 9×10-14
[0, 25] 4.098 3×10-16 3.007 0×10-14 1.046 4×10-14
[0, 30] 3.996 4×10-16 1.922 0×10-12 2.898 2×10-13
[-30, 30][0, 10] 6.844 6×10-16 2.202 7×10-10 3.639 3×10-11
[0, 15] 3.688 5×10-16 2.084 2×10-10 3.552 2×10-11
[0, 20] 2.797 2×10-16 2.072 4×10-10 3.464 8×10-11
[0, 25] 2.634 1×10-16 1.986 5×10-10 3.266 3×10-11
[0, 30] 4.006 7×10-16 1.819 3×10-10 3.087 1×10-11

Fig.3

The behavior of solitary wave solutions for equation with different parameters a, p"

Table 5

The maximum absolute error calculated by thebarycentric lagrange interpolation collocation method (a=0.3, p=1, x ∈ [-10, 10])"

m×n t∈[0, 10] t∈[0, 15] t∈[0, 20] t∈[0, 25] t∈[0, 30]
45×35 2.505 7×10-9 2.564 0×10-9 2.337 9×10-7 3.182 9×10-6 1.348 3×10-5
45×45 2.693 5×10-9 2.318 6×10-9 2.457 7×10-9 5.674 0×10-8 4.768 5×10-7
45×50 2.778 7×10-9 2.338 7×10-9 2.219 0×10-9 7.469 1×10-9 8.791 2×10-8
50×45 2.237 4×10-10 1.889 0×10-10 2.219 1×10-9 5.983 1×10-8 4.868 6×10-7
50×50 2.287 3×10-10 1.919 8×10-10 1.942 5×10-10 7.411 5×10-9 9.292 5×10-8
50×55 2.262 3×10-10 1.951 1×10-10 1.850 5×10-10 1.325 6×10-9 1.673 7×10-8
1 郑素佩,王令,王苗苗.求解二维浅水波方程的移动网格旋转通量法[J].应用数学和力学,2020,41(1):42-53.
ZHENGSupei,WANGLing,WANGMiaomiao.Solution of 2D shallow water wave equation with the moving grid rotating-invariance method[J].Applied Mathematics and Mechanis,2020,41(1):42-53.
2 樊荣,陈勋,郑克龙,等.浅水波方程的高精度隐式WCNS格式[J].应用力学学报,2021,38(4):1477-1484.
doi: 10.11776/cjam.38.04.A073
FANRong,CHENXun,ZHENGKelong,et al.High order implicit WCNS scheme for the shallow water equations[J].Chinese Journal of Applied Mechanics,2021,38(4):1477-1484.
doi: 10.11776/cjam.38.04.A073
3 刘会彩,李东方.扩展的(3+1)维浅水波方程的解析解[J].南昌大学学报(理科版),2022,46(3):309-313.
doi: 10.3969/j.issn.1006-0464.2022.03.004
LIUHuicai,LIDongfang.Analytical solutions of the extended (3+1)-dimensional shallow water wave equation[J].Journal of Nanchang University(Natural Science),2022,46(3):309-313.
doi: 10.3969/j.issn.1006-0464.2022.03.004
4 DUTYKHD,PELTNOVSKYE.Numerical simulation of a solitonic gas in KdV and KdV-BBM equations[J].Physics Letters A,2014,378(42):3102-3110.
doi: 10.1016/j.physleta.2014.09.008
5 ASOKANR,VINODHD.Soliton and exact solutions for the KdV-BBM type equations by tanh-coth and transformed rational function methods[J].International Journal of Applied and Computational Mathematics,2018,4,1-20.
6 CARVAJALX,PANTHEEM.On sharp global well-posedness and ill-posedness for a fifth-order KdV-BBM type equation[J].Mathematical Analysis and Applications,2019,479(1):688-702.
doi: 10.1016/j.jmaa.2019.06.045
7 ROUATBIA,OMRANIK.Two conservative difference schemes for a model of nonlinear dispersIve equations[J].Chaos Solitons Fractals,2017,104(9):516-530.
8 王希,傅浈,胡劲松.广义BBM-KdV方程的两种孤波解及其守恒律[J].西华大学学报(自然科学版),2021,40(6):109-112.
WANGXi,FUZhen,HUJinsong.Solitary wave solutions and conservation laws for the generalized BBM-KdV equation[J].Journal of Xihua University(Natural Science Edition),2021,40(6):109-112.
9 何丽,王希,胡劲松.广义BBM-KdV方程的一个守恒C-N差分格式[J].理论数学,2021,11(4):428-435.
HELi,WANGXi,HUJinsong.A conservative C-N difference scheme for the generalized BBM-KdV equation[J].Pure Mathematics,2021,11(4):428-435.
10 王希,张爽,胡劲松.求解广义BBM-KdV方程的守恒型有限差分方法[J].哈尔滨理工大学学报,2022,27(4):147-153.
WANGXi,ZHANGShuang,HUJinsong.Conservative finite difference method for solving generalized BBM-KdV equation[J].Journal of Harbin University of Science and Technology,2022,27(4):147-153.
11 王兆清,李淑萍.非线性问题的重心插值配点法[M].北京:国防工业出版社,2015.
WANGZhaoqing,LIShuping.Barycentric interpolation collocation method for nonlinear problems[M].Beijing:National Defense Industry Press,2015.
12 李树忱,王兆清.高精度无网格重心插值配点法: 算法、程序及工程应用[M].北京:科学出版社,2012.
LIShuchen,WANGZhaoqing.High precision barycentric interpolation collocation meshless method: algorithm, program and engineering application[M].Beijing:Science Press,2012.
13 王兆清,钱航,李金.移动边界问题的时空域正则区域迭代配点法[J].计算物理,2021,(1):16-24.
WANGZhaoqing,QIANHang,LIJin.Regular domain iterative collocation method in space-time region for moving boundary problems[J].Chinese Journal of Computational Physics,2021,(1):16-24.
14 王兆清,徐子康,李金.不可压缩平面问题的位移-压力混合重心插值配点法[J].应用力学学报,2018,35(3):631-636.
WANGZhaoqing,XUZikang,LIJin.Displacement-pressure mixed barycentric interpolation collocation method for incompressible plane problems[J].Chinese Journal of Applied Mechanics,2018,35(3):631-636.
15 李树忱,王兆清,袁超.极坐标系下弹性问题的重心插值配点法[J].中南大学学报(自然科学版),2013,44(5):2031-2040.
LIShuchen,WANGZhaoqing,YUANChao.Barycentric interpolation collocation method for solving elastic problems[J].Journal of Central South University(Science and Technology),2013,44(5):2031-2040.
16 王兆清,张磊,徐子康,等.平面弹性问题的位移-应力混合重心插值配点法[J].应用力学学报,2018,35(2):304-308.
WANGZhaoqing,ZHANGLei,XUZikang,et al.Displacement-pressure mixed barycentric interpolation collocation method for plane elastic problems[J].Chinese Journal of Applied Mechanics,2018,35(2):304-308.
17 王兆清,纪思源,徐子康,等.不规则区域平面弹性问题的正则区域重心插值配点法[J].计算力学学报,2018,35(2):195-201.
WANGZhaoqing,JISiyuan,XUZikang,et al.A regular domain collocation method based on barycentric interpolation for solving plane elastic problems in irregular domains[J].Chinese Journal of Applied Mechanics,2018,35(2):195-201.
18 LIJin,CHENGYongling.Numerical solution of Volterra integro-differential equations with linear barycentric rational method[J].International Journal of Applied and Computational Mathematics,2020,6(5):1-12.
19 LIJin,CHENGYongling.Linear barycentric rational collocation method for solving heat conduction equation[J].Numerical Methods for Partial Differential Equations,2020,37(1):533-545.
20 LIJin,SANGYu.Linear barycentric rational collocation method for beam force vibration equation[J].Shock and Vibration,2021,2021(2):1-11.
21 陈文兴,戴书洋,田小娟,等.利用重心有理插值配点法求解一、二维对流扩散方程[J].西南师范大学学报(自然科学版),2020,45(8):35-43.
CHENWenxing,DAIShuyang,TIANXiaojuan,et al.Barycentric rational interpolation collocation method is used to solve 1D and 2D convection-diffusion equations[J].Journal of Southwest China Normal University(Natural Science Edition),2020,45(8):35-43.
22 李继彬,周艳,庄锦森,等.非线性常微分方程基础[M].北京:科学出版社,2022.
LIJibin,ZHOUYan,ZHUANGJinsen,et al.Fundamentals of nonlinear ordinary differential equation[M].Beijing:Science Press,2022.
23 KORTEWEGD J,DEVRIES G.On the change in form of long waves advancing in rectangular canal and on a new type of long stationary waves[J].The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science,1895,240(9):422-443.
24 BENJAMINT B,BONAJ L,MAHONYJ J.Model equations for long waves in non-linear dispersive systems[J].Philosophical Transacions of the Royal Society London A,1972,272,47-78.
25 CAIJiaxiang,HONGQi,YANGBin.Local structure-preserving methods for the generalized Rosenau-RLW-KdV equation with power law nonlinearity[J].Chinese Physics B,2017,26(10):100202.
26 郑茂波,谭宁波.求解广义改进的KdV方程的守恒差分算法[J].四川大学学报(自然科学版),2017,54(4):688-692.
ZHENGMaobo,TANNingbo.Conservative difference scheme for general improved KdV equation[J].Journal of Sichuan University(Natural Science Edition),2017,54(4):688-692.
27 OMRANIK.The convergence of fully discrete Galerkin approximations for the Benjamin-Bona-Mahony (BBM) equation[J].Applied Mathematics and Computation,2006,180(2):614-621.
28 吕淑娟,张法勇.广义KdV-Burgers方程长时间性态的谱方法[J].计算数学,1999,21(2):129-138.
LÜShujuan,ZHANGFayong.The spectral method for long time behavior of generalized KdV-Burgers equation[J].Mathematica Numerica Sinica,1999,21(2):129-138.
[1] QU Jin-zheng, LI Jin, SU Xiao-ning. Barycentric Lagrange interpolation collocation method for solving nonlinear pseudo-parabolic equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(4): 29-39.
[2] WANG Zhi-Gang, QIN Xin-Qiang, DANG Fa-Ning, SU Li-Jun. The existence and uniqueness of the solution to meshless methodwith ridge basis functions [J]. J4, 2010, 45(2): 44-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] WANG Gang, XU Xin-shun*. A new Multi-instance learning method for scene classification[J]. J4, 2010, 45(7): 108 -113 .
[2] LU Wei-jie,ZHU Chen-fu,SONG Cui and YANG Yan-li . Determination of inorganic cations in the Chinese traditional drug Yujin by capillary electrophoresis[J]. J4, 2007, 42(7): 13 -18 .
[3] TANG Feng-qin1, BAI Jian-ming2. The precise large deviations for a risk model with extended negatively upper orthant dependent claim  sizes[J]. J4, 2013, 48(1): 100 -106 .
[4] QANG Yao,LIU Jian and WANG Ren-qing,* . Allee effect and its significance to small population management in nature reservation and biological invasions[J]. J4, 2007, 42(1): 76 -82 .
[5] ZHAO Jun1, ZHAO Jing2, FAN Ting-jun1*, YUAN Wen-peng1,3, ZHANG Zheng1, CONG Ri-shan1. Purification and anti-tumor activity examination of water-soluble asterosaponin from Asterias rollestoni Bell[J]. J4, 2013, 48(1): 30 -35 .
[6] YANG Yong-wei1, 2, HE Peng-fei2, LI Yi-jun2,3. On strict filters of BL-algebras#br#[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(03): 63 -67 .
[7] HAN Ya-fei, YI Wen-hui, WANG Wen-bo, WANG Yan-ping, WANG Hua-tian*. Soil bacteria diversity in continuous cropping poplar plantation#br# by high throughput sequencing[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(05): 1 -6 .
[8] XIE Shu-tao,SONG Xiao-yanAntimicrobial activities of Trichokonins: Peptaibollike antimicrobial peptides produced by Trichoderma koningii[J]. J4, 2006, 41(6): 140 -144 .
[9] LIU Bao-cang,SHI Kai-quan . Reliablity characteristics of Srough sets[J]. J4, 2006, 41(5): 26 -29 .
[10] LI Hui-juan,YIN Hai-ying,ZHANG Xue-cheng and YANG Ai-fang* . Enhancement of drought resistance in transgenic tobacco expressing sucrose: Sucrose 1-fructosyltransferase gene from Lactuca sativa[J]. J4, 2007, 42(1): 89 -94 .