JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (11): 40-50.doi: 10.6040/j.issn.1671-9352.0.2023.488

Previous Articles    

Staining methods on arbuscular mycorrhizal fungi in Lycium barbarum roots and the relationship between colonization rate and soil factors

YANG Mu1,2,3, JI Shenglian1,2,3, GUO Huan1,2,3, DUAN Guozhen1,3*, FAN Guanghui1,3, LI Jianling1,3, WANG Zhanlin1,3   

  1. 1. Academy of Agricultural and Forestry Sciences, Qinghai University, Xining 810016, Qinghai, China;
    2. College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, Qinghai, China;
    3. Qinghai Plateau Key Laboratory of Tree Genetics and Breeding, Xining 810016, Qinghai, China
  • Published:2024-11-29

Abstract: Understanding the infection and colonization of arbuscular mycorrhizal fungi(AMF)is the basis for mobilizing indigenous AMF to improve plant resistance. Lycium barbarum in nine fields of the Qaidam Basin were the subject. Based on the basic staining method of AMF, previous studies were optimised to investigate the main factors influencing the observation of AMF on the roots of perennial field-grown L.barbarum. The influence of different regions, soil pH, soil physicochemical properties and the colonization rate of AMF on L.barbarum were also compared. The results showed that the optimal observation effect of AMF colonization rate on the roots of Perennial field-grown L.barbarum in the Qaidam Basin was achieved by the following steps. First, the fixed root segments were placed in a 10% KOH 90 ℃ for 90 min, then in the boiling alkaline peroxide(3 mL NaOH+30 mL 10% H2O2+H2O to 600 mL)for 15-20 min, followed by 5 min of H2O2 bleaching, 5 min of lactic acidification, 5 min of acetone ink staining and 30 min of lactic acid glycerol 90 ℃ decolourisation. This method can clearly observe the structures of vesicles and hyphae in the roots of perennial field-grown L.barbarum. The average AMF colonization rate of perennial field-grown L.barbarum in the Qaidam Basin was about 41.32%. RDA analysis showed that the AMF colonization rate in L.barbarum roots was mainly affected by factors such as soil pH, available phosphorous content(xAP), and available potassium content(xAK), among which the soil pH showed a significant positive correlation with the AMF colonization rate, while xAP and xAK showed a significant negative correlation with the colonization rate.

Key words: Lycium barbarum, arbuscular mycorrhizal fungi, colonization rate, redundancy analysis

CLC Number: 

  • Q948.12
[1] 惠红霞,许兴,李守明. 盐胁迫抑制枸杞光合作用的可能机理[J]. 生态学杂志,2004,23(1):5-9. HUI Hongxia, XU Xing, LI Shouming. Possible mechanism of inhibition on photosynthesis of Lycium barbarum under salt stress[J]. Chinese Journal of Ecology, 2004, 23(1): 5-9.
[2] BONATERRA A, BADOSA E, DARANAS N, et al. Bacteria as biological control agents of plant diseases[J]. Microorga-nisms, 2022, 10(9):1759.
[3] 储薇,郭信来,张晨,等. 丛枝菌根真菌-植物-根际微生物互作研究进展与展望[J]. 中国生态农业学报(中英文),2022,30(11):1709-1721. CHU Wei, GUO Xinlai, ZHANG Chen, et al. Research progress and future directions of arbuscular mycorrhizal fungi-plant-rhizosphere microbial interaction[J]. Chinese Journal of Eco-agriculture, 2022, 30(11):1709-1721.
[4] 杨沐,郭寰,段国珍,等. 丛枝菌根真菌在提高植物抗逆性与土壤改良中的作用与机制研究进展[J]. 中国粉体技术,2024,30(2):164-172. YANG Mu, GUO Huan, DUAN Guozhen, et al. Role and mechanism of arbuscular mycorrhizal fungi in enhancing plant stress resistance and soil improvement: a review[J]. China Powder Science and Technology, 2024, 30(2):164-172.
[5] SAWERS R J H, SVANE S F, QUAN C, et al. Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters[J]. The New Phytologist, 2017, 214(2):632-643.
[6] TIAN Hui, YUAN Xiaolei, DUAN Jianfeng, et al. Influence of nutrient signals and carbon allocation on the expression of phosphate and nitrogen transporter genes in winter wheat(Triticum aestivum L.)roots colonized by arbuscular mycorrhizal fungi[J]. PLoS One, 2017, 12(2):e0172154.
[7] ZHANG Haoqiang, WEI Suzhen, HU Wentao, et al. Arbuscular mycorrhizal fungus Rhizophagus irregularis increased potassium content and expression of genes encoding potassium channels in Lycium barbarum[J]. Frontiers in Plant Science, 2017, 8:440.
[8] 盛敏,唐明,迪丽努尔,等. 西北盐碱土主要植物丛枝菌根研究[J]. 西北农林科技大学学报(自然科学版),2007,35(2):74-78. SHENG Min, TANG Ming, DILINUR, et al. Study on arbuscular mycorrhizae of common halophytes from northwest sali-alkali soil[J]. Journal of Northwest Agriculture and Forestry University(Natural Science Edition), 2007, 35(2):74-78.
[9] 何嘉,卢有媛,谢明霞,等. 基于多指标成分比较不同微生物菌剂对枸杞子品质的影响[J]. 中国实验方剂学杂志,2023,29(24):177-184. HE Jia, LU Youyuan, XIE Mingxia, et al. Comparison of effect of different microbial agents on quality of lycii fructus based on multiple index components[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2023, 29(24):177-184.
[10] 李越鲲,孙燕飞,雷勇辉,等. 枸杞根际土壤真菌群落多样性的高通量测序[J]. 微生物学报,2017,57(7):1049-1059. LI Yuekun, SUN Yanfei, LEI Yonghui, et al. Fungal community diversity in rhizosphere soil of Lycium barbarum L. based on high-throughput sequencing[J]. Acta Microbiologica Sinica, 2017, 57(7):1049-1059.
[11] 韦素贞,张好强,胡文涛,等. AM真菌和施钾对宁夏枸杞响应干旱胁迫的交互影响[J]. 西北林学院学报,2016,31(5):165-170. WEI Suzhen, ZHANG Haoqiang, HU Wentao, et al. Interactive effects of arbuscular mycorrhizal fungus and potassium application on response of Lycium barbarum to drought stress[J]. Journal of Northwest Forestry University, 2016, 31(5):165-170.
[12] 梁晓婕,王亚军,李越鲲,等. 枸杞对盐碱胁迫响应机制的研究进展[J]. 宁夏农林科技,2020,61(8):20-23. LIANG Xiaojie, WANG Yajun, LI Yuekun, et al. Research progress of response mechanism of wolfberry to saline-alkali stress [J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2020, 61(8):20-23.
[13] 吕燕,王文彬,苟琪,等. 根腐病对宁夏枸杞根区土壤丛枝菌根真菌群落的影响[J]. 生物技术通报,2021,37(12):29-40. LYU Yan, WANG Wenbin, GOU Qi, et al. Effect of root rot on arbuscular mycorrhizal fungi community in root zone soil of Lycium barbarum L[J]. Biotechnology Bulletin, 2021, 37(12):29-40.
[14] 许诗萍,高日芳,张金莲,等. 广西金花茶根系丛枝菌根(AM)真菌染色方法探讨[J]. 热带作物学报,2024,45(1):215-224. XU Shiping, GAO Rifang, ZHANG Jinlian, et al. Method to stain arbuscular mycorrhiza fungi in the roots of Guangxi camellia nitidissima[J]. Chinese Journal of Tropical Crops, 2024, 45(1):215-224.
[15] 廖楠,张金莲,李冬萍,等. 甘蔗根系内生真菌染色方法探讨[J]. 西南农业学报,2016,29(4): 814-819. LIAO Nan, ZHANG Jinlian, LI Dongping, et al. Method to stain endophytic fungi in sugarcane roots[J]. Southwest China Journal of Agricultural Sciences, 2016, 29(4):814-819.
[16] 全达万,李栋,张金莲,等. 长春花接种丛枝菌根真菌对柑橘黄龙病菌的抑制效果[J]. 热带作物学报,2020,41(11):2259-2266. QUAN Dawan, LI Dong, ZHANG Jinlian, et al. Effects of inhibition citrus huanglongbing on Catharanthus roseus with different arbuscular mycorrhizal fungi species[J]. Chinese Journal of Tropical Crops, 2020, 41(11):2259-2266.
[17] 陈丽婷,施柳,欧阳建萍,等. 油茶根系内生真菌染色方法探究[J]. 生物灾害科学,2023,46(2):192-202. CHEN Liting, SHI Liu, OUYANG Jianping, et al. The investigation of staining methods for endophytic fungi in Camellia oleifera roots[J]. Biological Disaster Science, 2023, 46(2):192-202.
[18] 盛萍萍,刘润进,李敏. 丛枝菌根观察与侵染率测定方法的比较[J]. 菌物学报,2011,30(4):519-525. SHENG Pingping, LIU Runjin, LI Min. Methodological comparison of observation and colonization measurement of arbuscular mycorrhizal fungi[J]. Mycosystema, 2011, 30(4):519-525.
[19] 覃晓娟,陈廷速,李冬萍,等. 香蕉根系丛枝菌根(AM)真菌染色方法比较[J]. 基因组学与应用生物学,2017,36(6):2447-2451. QIN Xiaojuan, CHEN Tingsu, LI Dongping, et al. Comparison of staining methods on arbuscular mycorrhizal(AM)fungi in banana roots[J]. Genomics and Applied Biology, 2017, 36(6):2447-2451.
[20] 王晓国,周主贵,李冬萍,等. 同色兜兰菌根真菌染色方法比较[J]. 亚热带农业研究,2015,11(4):267-270. WANG Xiaoguo, ZHOU Zhugui, LI Dongping, et al. Comparison of five staining methods for orchid mycorrhizal fungi in Paphiopedilum concolor roots[J]. Subtropical Agriculture Research, 2015, 11(4):267-270.
[21] 陈思杰,李金,杜娟,等. 枸杞根系内生真菌的染色方法[J]. 河北大学学报(自然科学版),2021,41(4):406-411. CHEN Sijie, LI Jin, DU Juan, et al. Staining methods on endophytic fungi Lycium barbarum roots[J]. Journal of Hebei University(Natural Science Edition), 2021, 41(4):406-411.
[22] 郭蕊. 柴达木枸杞蚜虫生物学特性及种群生态学研究[D]. 西宁:青海大学,2012. GUO Rui. Studies on biological characteristics and ecology population of Aphid gosypii glover from host Lycium barbarum L. in Qaidam[D]. Xining: Qinghai University, 2012.
[23] 王思雨,魏涵,陈科宇,等. 丛枝菌根真菌(AMF)孢子、菌丝密度及侵染率定量测定方法[J]. 微生物组实验手册,2022,B10-101:e2104253. WANG Siyu, WEI Han, CHEN Keyu, et al. Practical methods for arbuscular mycorrhizal fungal spore density, hyphaldensity and colonization rate of AMF[J]. Microbiome Protocols eBook, 2022, B10-101:e2104253.
[24] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000. BAO Shidan. Soil agrochemical analysis[M]. 3rd ed. Beijing: China Agricultural Press, 2000.
[25] 郑亚茹. 桑树根际丛枝菌根真菌(AMF)多样性及对宿主耐盐性的影响[D]. 咸阳: 西北农林科技大学,2021. ZHENG Yaru. Diversity of arbuscular mycorrhizal fungi(AMF)in mulberry rhizosphere and its effect on salt tolerance of hosts[D]. Xianyang: Northwest A & F University, 2021.
[26] 刘敏,峥嵘,白淑兰,等. 丛枝菌根真菌物种多样性研究进展[J]. 微生物学通报,2016,43(8):1836-1843. LIU Min, ZHENG Rong, BAI Shulan, et al. Advances of species diversity of arbuscular mycorrhizal fungi[J]. Microbiology China, 2016, 43(8):1836-1843.
[27] 张海娟,芦光新,范月君,等. 丛枝菌根真菌对高寒草地6种禾本科牧草生长的影响[J]. 草地学报,2022,30(4):1013-1020. ZHANG Haijuan, LU Guangxin, FAN Yuejun, et al. Effects of arbuscular mycorrhizal fungi on growth of six gramineous forages of alpine meadow[J]. Acta Agrestia Sinica, 2022, 30(4):1013-1020.
[28] 王亚军,安巍,罗青,等. 丛枝菌根真菌菌剂扩繁及菌根化枸杞育苗技术研究[J]. 北方园艺2014(5):139-143. WANG Yajun, AN Wei, LUO Qing, et al. Research on enlargment reproducing of AMF microbial inoculum and growing seedling technology of wolfberry with mycorrhization[J]. Northern Horticulture, 2014(5):139-143.
[29] 吴勇. 中国不同区域红树林AMF侵染及土壤孢子密度特征研究[D]. 广州:中山大学,2013. WU Yong. Colonization and spore densities of AMF in mangroves located in different regions of China[D]. Guangzhou: Sun Yat-sen University, 2013.
[30] 唐燕,李敏,马焕成,等. 云南轿子山腋花杜鹃菌根多样性研究[J]. 云南大学学报(自然科学版),2019,41(5):1062-1072. TANG Yan, LI Min, MA Huancheng, et al. Mycorrhizal diversity of Rhododendron racemosum Franch. in Yunnan Jiaozi Mountain[J]. Journal of Yunnan University(Natural Sciences Edition), 2019, 41(5):1062-1072.
[31] VIERHEILIG H, COUGHLAN A P, WYSS U P, et al. Ink and vinegar, a simple staining technique for arbuscular mycorrhizal fungi[J]. Applied and Environmental Microbiology, 1998, 64(12):5004-5007.
[32] 杨亚宁,巴雷,白晓楠,等. 一种改进的丛枝菌根染色方法[J]. 生态学报,2010,30(3):774-779. YANG Yaning, BA Lei, BAI Xiaonan, et al. An improved method to stain arbuscular mycorrhizal fungi in plant roots[J]. Acta Ecologica Sinica, 2010, 30(3):774-779.
[33] 郭奇颖,丘雨,黄胡铃,等. 木薯内生真菌及其根际土壤真菌多样性分析[J/OL]. 分子植物育种,2024, https://link.cnki.net/urlid/46.1068.S.20240222.1554.012. GUO Qiying, QIU Yu, HUANG Huling, et al. Diversity analysis of endophytic fungi and rhizosphere soil fungi in cassava[J/OL]. Molecular Plant Breeding, 2024, https://link.cnki.net/urlid/46.1068.S.20240222.1554.012.
[34] 李冬萍,宋娟,李铭燕,等. 5种染色剂对枳砧纽荷尔脐橙根系AM真菌染色效果比较[J]. 中国南方果树,2020,49(5):36-40, 44. LI Dongping, SONG Juan, LI Mingyan, et al. Comparison of the staining effect of five dyes on AM fungi in the roots of trifoliate orange grafted with newhall navel orange[J]. South China Fruits, 2020, 49(5):36-40, 44.
[35] YONEYAMA K, XIE X N, KUSUMOTO D, et al. Nitrogen deficiency as well as phosphorus deficiency in sorghum promotes the production and exudation of 5-deoxystrigol, the host recognition signal for arbuscular mycorrhizal fungi and root parasites[J]. Planta, 2007, 227(1):125-132.
[36] LIU Hongfei, WU Yang, XU Hongwei, et al. N enrichment affects the arbuscular mycorrhizal fungi-mediated relationship between a C4 grass and a legume[J]. Plant Physiology, 2021, 187(3):1519-1533.
[37] 高瑞,罗珠珠,何仁元,等. 黄土高原紫花苜蓿地土壤AMF群落结构及其组装机制[J]. 中国生态农业学报(中英文),2023,31(6):835-844. GAO Rui, LUO Zhuzhu, HE Renyuan, et al. Soil AMF community structure and assembly mechanism of Medicago sativa field in Loess Plateau[J]. Chinese Journal of Eco-agriculture, 2023, 31(6): 835-844.
[38] NGO H T T, WATTS-WILLIAMS S J, PANAGARIS A, et al. Development of an organomineral fertiliser formulation that improves tomato growth and sustains arbuscular mycorrhizal colonisation[J]. Science of the Total Environment, 2022, 815:151977.
[39] 汪鹞雄,李全,沈益康,等. 模拟氮沉降对杉木丛枝菌根真菌侵染率和球囊霉素的影响[J]. 生态学报,2021,41(1):194-201. WANG Yaoxiong, LI Quan, SHEN Yikang, et al. Effects of nitrogen deposition on arbuscular mycorrhizal fungal colonization and glomalin-related soil protein of Chinese fir[J]. Acta Ecologica Sinica, 2021, 41(1):194-201.
[40] FENG Zengwei, LIU Xiaodi, FENG Guangda, et al. Linking lipid transfer with reduced arbuscule formation in tomato roots colonized by arbuscular mycorrhizal fungus under low pH stress[J]. Environmental Microbiology, 2020, 22(3):1036-1051.
[41] 温苗,施松梅,罗协,等. 不同树龄桑园丛枝菌根侵染、球囊霉素土层分布及与土壤因子的关系[J]. 应用与环境生物学报,2020,26(5):1138-1146. WEN Miao, SHI Songmei, LUO Xie, et al. Relationships between spatial distribution of arbuscular mycorrhizal colonization, glomalin-related soil protein, and rhizhospheric soil chemical properties under different aged mulberry orchards[J]. Chin J Appl Environ Biol, 2020, 26(5):1138-1146.
[42] 李玲. 贺兰山东麓酿酒葡萄根系和根际土壤丛枝菌根真菌多样性及其与土壤因子相关性研究[D]. 银川:宁夏大学,2022. LI Ling. Diversity of arbuscular mycorrhizal fungi in root systems and inter-root soils of wine grapes at the eastern of the Helan Mountains and their correlation with soil factors[D]. Yinchuan: Ningxia University, 2022.
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!