JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (11): 100-109.doi: 10.6040/j.issn.1671-9352.0.2023.457

Previous Articles    

A petroleum multi-refinery production optimization method based on successive linear programming

DONG Fenglian1,2*, ZHANG Fengsheng3, WEI Zhiwei1,2, SUN Xin1,2, LI Yuewen4   

  1. 1. PetroChina Planning and Engineering Institute, Beijing 100086, China;
    2. CNPC Laboratory of Oil &
    Gas Business Chain Optimization, Beijing 100083, China;
    3. CNPC PetroChina Production &
    Business Management Department, Beijing 100007, China;
    4. Shanshu Technology(Beijing)Co., Ltd., Beijing 100102, China
  • Published:2024-11-29

Abstract: To enhance the profitability of integrated oil companies and address the optimization problem of multi-refinery production planning with integer variables and non-convex bilinear constraints, we established an optimization model for multi-refinery production planning using operations research methods by holistically optimizing the allocation of crude oil among multiple refineries, the load of each refinerys units, and the product slate. We proposed a solution method for mixed integer nonlinear programming(MINLP)based on successive linear programming(SLP)and introduced a branching strategy tailored to business characteristics, enabling the solution process to converge rapidly and provide high-quality solutions. Validation analysis using actual data from a petroleum enterprise demonstrated that the proposed algorithm offered advantages in both the models objective value and solution efficiency.

Key words: multi-refinery, production planning, mixed integer nonlinear programming, successive linear programming, branching strategy

CLC Number: 

  • O221.2
[1] 董丰莲,魏志伟,孙鑫,等. 石油产业链一体化优化模型系统的开发与应用[J]. 油气与新能源, 2022, 34(4):87-92,98. DONG Fenglian, WEI Zhiwei, SUN Xin, et al. Development and application of the optimization model system regarding the integration of the petroleum industry chain[J]. Petroleum and New Energy, 2022, 34(4):87-92,98.
[2] 何银仁,解增忠. 炼油生产经营优化应用案例[M]. 北京: 中国石化出版社, 2018. HE Yinren, XIE Jiezhong. Application cases of refinerys production and operation plan optimization[M]. Beijing: China Petrochemical Press, 2018.
[3] 郭锦标,杨明诗. 化工生产计划与调度的优化[M]. 北京: 化学工业出版社, 2006. GUO Jinbiao, YANG Mingshi. Chemical industrys production planning and scheduling optimization[M]. Beijing:Chemical Industry Press, 2006.
[4] HAVERLY C A. Studies of the behavior of recursion for the pooling problem[J]. Association for Computing Machinery, 1978(25):19-28.
[5] BEN-TAL A, EIGER G, GERSHOVITZ V. Global minimization by reducing the duality gap[J]. Mathematical Programming, 1994, 63(1):193-212.
[6] QUESDA I, GROSSMANN I E. Global optimization of bilinear process networks with multicomponent flows[J]. Computers and Chemical Enginerring, 1995, 19(2):1219-1242.
[7] 董丰莲,王华,刘华林,等.新一代面向协同应用的计划优化系统[J].化工进展, 2016, 35(7):1986-1993. DONG Fenglian, WANG Hua, LIU Hualin, et al. New generation of planning optimization system oriented to collaborative application[J]. Chemical Industry and Engineering Progress, 2016, 35(7):1986-1993.
[8] 郭锦标. 线性规划技术在石油化工行业的应用: 生产计划优化的历史、现状[J].计算机与应用化学, 2004(1):1-5. GUO Jinbiao. Linear programming technique in petroleum sector: a review[J]. Computers and Applied Chemistry, 2004(1):1-5.
[9] 何银仁,张慧. 用分布递归法求解带混合物流的计划模型[J]. 石油炼制与化工, 1996, 27(10):41-44. HE Yinren, ZHANG Hui. Solution of pooling problem in planning model with distributed recursive method[J]. Petroleum Processing and Petrochemicals, 1996, 27(10):41-44.
[10] KUTZ T, DAVIS M, CREEK R, et al. Optimizing chevrons refineries[J]. Interfaces, 2014, 44(1):39-54.
[11] GRIFFITH R E, STEWART R A. A nonlinear programming technique for the optimization of continuous processing systems[J]. Management Science, 1961, 7(4):379-392.
[12] PALACIOS-GOMEZ F, LASDON L, ENGQUIST M. Nonlinear optimization by successive linear programming[J]. Management Science, 1982, 28(10):1106-1120.
[13] BAKER T E, LASDON L S. Successive linear programming at exon[J]. Management Science, 1985, 31(3):264-274.
[14] ZHANG J Z, KIM N H, LASDON L. An improved successive linear programming algorithm[J]. Management Science, 1985, 31(10):1312-1331.
[15] LASDON L S, WAREN A D, SARKAR S, et al. Solving the pooling problem using generalized reduced gradient and successive linear programming algorithms[J]. ACM SIGMAP Bulletin, 1979(27):9-15.
[16] DAI Y H, DIAO R, FU K. Complexity analysis and algorithm design of pooling problem[J]. Journal of the Operations Research Society of China, 2018, 6(2):249-266.
[17] GROTHEY A, MCKINNON K. On the effectiveness of sequential linear programming for the pooling problem[J]. Annals of Operations Research, 2023, 322(2):691-711.
[18] CASTRO P M. New MINLP formulation for the multiperiod pooling problem[J]. AIChE Journal, 2015, 61(11):3728-3738.
[19] JOLY M, MORO L F L, PINTO J M. Planning and scheduling for petroleum refineries using mathematical programming[J]. Brazilian Journal of Chemical Engineering, 2002, 19(2):207-228.
[20] ZAMORA J M, GROSSMANN I E. A branch and contract algorithm for problems with concave univariate, bilinear and linear fractional terms[J]. Journal of Global Optimization, 1999, 14:217-249.
[21] MEYER C A, FLOUDAS C A. Global optimization of acombinatorially complex generalized pooling problem[J]. AIChE Journal, 2006, 52(3):1027-1037.
[22] CASTILLO P, CASTRO P M, MAHALEC V. Global optimization algorithm for large-scale refinery planning models with bilinear terms[J]. Industrial & Engineering Chemistry Research, 2017, 56(2):530-548.
[23] LOTERO I, TRESPALACIOS F, GROSSMANN I E, et al. An MILP-MINLP decomposition method for the global optimization of a source based model of the multiperiod blending problem[J]. Computers & Chemical Engineering, 2016, 87:13-35.
[24] RUTH M, FLOUDAS CHRISTODOULOS A. Advances for the pooling problem: modeling, global optimization, and computational studies survey[J]. Applied and Computational Mathematics, 2009, 8:3-22.
[25] ACHTERBERG T, KOCH T, MARTIN A. Branching rules revisited[J]. Operations Research Letters, 2005, 33(1):42-54.
[1] Minglei FANG,Defeng DING,Ming WANG,Yuting SHENG. A new modified efficient Shamanskii-like Levenberg-Marquardt method for solving systems of nonlinear equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 118-126.
[2] . Interval algorithm for mixed integer nonlinear two-level programming problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 9-17.
[3] ZHENG Xiu-yun, SHI Jia-rong. A globally convergent conjugate gradient method with Armijo line search [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 98-101.
[4] WANG Kai-rong, GAO Pei-ting. Two mixed conjugate gradient methods based on DY [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 16-23.
[5] LI Mei-xia1,2, LIU Qian3. Properties of a new kind of exact augmented Lagrangian function [J]. J4, 2013, 48(12): 90-95.
[6] SUN Min . A modified super-memory gradient method with angle property [J]. J4, 2008, 43(6): 68-70 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!