JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2024, Vol. 59 ›› Issue (11): 100-109, 125.doi: 10.6040/j.issn.1671-9352.0.2023.457

Previous Articles     Next Articles

A petroleum multi-refinery production optimization method based on successive linear programming

Fenglian DONG1,2(),Fengsheng ZHANG3,Zhiwei WEI1,2,Xin SUN1,2,Yuewen LI4   

  1. 1. PetroChina Planning and Engineering Institute, Beijing 100086, China
    2. CNPC Laboratory of Oil & Gas Business Chain Optimization, Beijing 100083, China
    3. CNPC PetroChina Production & Business Management Department, Beijing 100007, China
    4. Shanshu Technology (Beijing) Co., Ltd., Beijing 100102, China
  • Received:2023-10-26 Online:2024-11-20 Published:2024-11-29

Abstract:

To enhance the profitability of integrated oil companies and address the optimization problem of multi-refinery production planning with integer variables and non-convex bilinear constraints, we established an optimization model for multi-refinery production planning using operations research methods by holistically optimizing the allocation of crude oil among multiple refineries, the load of each refinery's units, and the product slate. We proposed a solution method for mixed integer nonlinear programming (MINLP) based on successive linear programming (SLP) and introduced a branching strategy tailored to business characteristics, enabling the solution process to converge rapidly and provide high-quality solutions. Validation analysis using actual data from a petroleum enterprise demonstrated that the proposed algorithm offered advantages in both the model's objective value and solution efficiency.

Key words: multi-refinery, production planning, mixed integer nonlinear programming, successive linear programming, branching strategy

CLC Number: 

  • O221.2

Fig.1

Refinery production process flowchart"

Fig.2

Illustration of integrated operation of upstream and downstream of comprehensive petroleum and petrochemical companies"

Table 1

Definition of sets"

集合符号 含义   集合符号 含义
N 节点   EmI 可加工m物料的装置
NR 炼厂型节点 EmO 可产出m物料的装置
NF 非炼厂型节点 M 物料
E 装置 Me 装置e进料
ED 调和池 M(m, m′) 可以产出物料m的进物料m
EG 常压装置 MeI 进入装置e的物料
EH 减压装置 MZ 总部物料
EU 二次加工装置 Q 物性

Table 2

Definition of parameters"

参数符号 含义
Cr, mP r炼厂原料采购价格, rNR, mM
Cr, mS r炼厂产品销售价格, rNR, mM
Cn, zP n节点原料采购价格, nN, zMZ
Cn, zS n节点产品销售价格, nN, MZ
Cn, n′, z n节点到n′节点运输物料z的单位运费, nN, n′∈N, MZ
Ar, e, q, m′, m r炼厂二次加工装置e的进料m′将物性q传递给出料m的系数, rNReEU, qQ, m′∈Me, mM
Br, e, q, m′, m r炼厂二次加工装置e的进料m′将物性q传递给出料m的偏置, rNReEU, qQ, m′∈Me, mM
αr, e, m′, m r炼厂装置e加工物料m′产出物料m的收率, rNR, eE, m′∈Me, mM
βr, m, qγr, m, q 炼厂r中物料mq物性上、下限, rNR, mM, qQ
βr, mPγr, mP 炼厂r中物料m的采购量上、下限, rNR, mM
βr, mSγr, mS 炼厂r中物料m的销售量上、下限, rNR, mM
βr, mVγr, mV 炼厂r中物料m的期末库存上、下限, rNR, mM
βr, eγr, e 炼厂r装置e的加工能力上、下限, rNR, eE
βn, zPγn, zP 节点n中物料z的采购量上、下限, nN, MZ
βn, zSγn, zS 节点n中物料z的销售量上、下限, nN, MZ
βn, zVγn, zV 节点n中物料z的期末库存上、下限, nN, zMZ
βn, nγn, n 节点n到节点n′的运输量上、下限, nN, n′∈N

Table 3

Definition of variables"

变量符号 含义
xr, e, m 炼厂r装置e中物料m的进(出)量, rNR, eE, mM
xr, mP 炼厂r物料m的进厂量, rNR, mM
xr, mS 炼厂r物料m的出厂量, rNR, mM
xr, mOPEN 炼厂r中物料m的期初库存, rNR, mM
xr, mCLOSE 炼厂r中物料m的期末库存, rNR, mM
xr, m, q 炼厂r物料mq物性值, rNR, mM, qQ
wr, e 炼厂r装置e启停(0-1变量), rNR, eE
xr, e 炼厂r装置e的加工量, rNR, eE
yn, zP 节点n中物料z的采购量, nN, zMZ
yn, zS 节点n中物料z的销售量, nN, zMZ
yn, zOPEN 节点n中物料z的期初库存, nN, zMZ
yn, zCLOSE 节点n中物料z的期末库存, nN, zMZ
yn, n′, z 节点n到节点n′运输物料z的量, nN, n′∈N, zMZ

Fig.3

Algorithm flowchart"

Table 4

Assignment of model instances"

算例 NR M Q E EG EH EU
1 3 854 37 128 7 7 113
2 5 1 400 37 212 11 11 185

Table 5

Description of models"

算例 变量个数 约束个数 整数变量个数 非线性约束个数
1 18 212 8 614 78 3 070
2 28 933 13 556 96 4 764

Table 6

Performance of different algorithms"

算例Baron 人工方法+SLP 本文算法
最优目标值 时间/s 最优目标值 时间/s 最优目标值 时间/s
1 >7 200   152 985.30 30   157 980.32 1 825
2 >7 200 192 352.61 55 201 632.70 3 263

Table 7

Comparsion of results of differnet algorithms on Instance 1"

算法 关停装置原油MC的分配方案(单位:万吨)
炼厂1 炼厂2 炼厂3 合计
人工方法+SLP 炼厂1的第一套常压、第一套减压、第二套柴油加氢精制、渣油加氢,共4套装置 0 30.9 39.1 70.0
本文算法 炼厂2的第二套常压、第二套减压、第二套催化裂化、第二套气体分馏,炼厂1的渣油加氢,共5套装置 19.5 0 50.5 70.0

Table 8

Comparsion of results of differnet algorithms on Instance 2"

算法 关停装置汽油生产方案(单位:万吨)
炼厂4 炼厂5 炼厂6 炼厂7 炼厂8 合计
人工方法+SLP 炼厂7的第一套常压、第一套减压、第一套催化裂化,共3套装置 22.1 15.8 20.4 12.5 19.2 90.0
本文算法 炼厂6的第一套常压、第一套减压、第二套催化裂化、烷基化,炼厂8的第三套催化裂化,共5套装置 22.1 15.8 14.2 20.8 17.1 90.0

Table 9

Number of branchings and solving time for different branching strategies"

算例EG-EH-EU EG-EU-EH EH-EG-EU Strong Branching
分支次数 求解时间/s 分支次数 求解时间/s 分支次数 求解时间/s 分支次数 求解时间/s
1 381 1 825   425 2 104   382 1 843   434 2 142
2 511 3 263 616 4 037 552 3 516 593 3 962

Table 10

Comparison of solution time for different trust domain control policies 单位: s"

算例 只对物性变量进行信赖域控制 对全部变量进行信赖域控制
1 1 825 1 922
2 3 263 3 434
1 董丰莲, 魏志伟, 孙鑫, 等. 石油产业链一体化优化模型系统的开发与应用[J]. 油气与新能源, 2022, 34 (4): 87-92, 98.
DONG Fenglian , WEI Zhiwei , SUN Xin , et al. Development and application of the optimization model system regarding the integration of the petroleum industry chain[J]. Petroleum and New Energy, 2022, 34 (4): 87-92, 98.
2 何银仁, 解增忠. 炼油生产经营优化应用案例[M]. 北京: 中国石化出版社, 2018.
HE Yinren , XIE Jiezhong . Application cases of refinery's production and operation plan optimization[M]. Beijing: China Petrochemical Press, 2018.
3 郭锦标, 杨明诗. 化工生产计划与调度的优化[M]. 北京: 化学工业出版社, 2006.
GUO Jinbiao , YANG Mingshi . Chemical industry's production planning and scheduling optimization[M]. Beijing: Chemical Industry Press, 2006.
4 HAVERLY C A . Studies of the behavior of recursion for the pooling problem[J]. Association for Computing Machinery, 1978, (25): 19- 28.
5 BEN-TAL A , EIGER G , GERSHOVITZ V . Global minimization by reducing the duality gap[J]. Mathematical Programming, 1994, 63 (1): 193- 212.
6 QUESDA I , GROSSMANN I E . Global optimization of bilinear process networks with multicomponent flows[J]. Computers and Chemical Enginerring, 1995, 19 (2): 1219- 1242.
7 董丰莲, 王华, 刘华林, 等. 新一代面向协同应用的计划优化系统[J]. 化工进展, 2016, 35 (7): 1986- 1993.
DONG Fenglian , WANG Hua , LIU Hualin , et al. New generation of planning optimization system oriented to collaborative application[J]. Chemical Industry and Engineering Progress, 2016, 35 (7): 1986- 1993.
8 郭锦标. 线性规划技术在石油化工行业的应用: 生产计划优化的历史、现状[J]. 计算机与应用化学, 2004, (1): 1- 5.
GUO Jinbiao . Linear programming technique in petroleum sector: a review[J]. Computers and Applied Chemistry, 2004, (1): 1- 5.
9 何银仁, 张慧. 用分布递归法求解带混合物流的计划模型[J]. 石油炼制与化工, 1996, 27 (10): 41- 44.
HE Yinren , ZHANG Hui . Solution of pooling problem in planning model with distributed recursive method[J]. Petroleum Processing and Petrochemicals, 1996, 27 (10): 41- 44.
10 KUTZ T , DAVIS M , CREEK R , et al. Optimizing chevron's refineries[J]. Interfaces, 2014, 44 (1): 39- 54.
11 GRIFFITH R E , STEWART R A . A nonlinear programming technique for the optimization of continuous processing systems[J]. Management Science, 1961, 7 (4): 379- 392.
12 PALACIOS-GOMEZ F , LASDON L , ENGQUIST M . Nonlinear optimization by successive linear programming[J]. Management Science, 1982, 28 (10): 1106- 1120.
13 BAKER T E , LASDON L S . Successive linear programming at exon[J]. Management Science, 1985, 31 (3): 264- 274.
14 ZHANG J Z , KIM N H , LASDON L . An improved successive linear programming algorithm[J]. Management Science, 1985, 31 (10): 1312- 1331.
15 LASDON L S , WAREN A D , SARKAR S , et al. Solving the pooling problem using generalized reduced gradient and successive linear programming algorithms[J]. ACM SIGMAP Bulletin, 1979, (27): 9- 15.
16 DAI Y H , DIAO R , FU K . Complexity analysis and algorithm design of pooling problem[J]. Journal of the Operations Research Society of China, 2018, 6 (2): 249- 266.
17 GROTHEY A , MCKINNON K . On the effectiveness of sequential linear programming for the pooling problem[J]. Annals of Operations Research, 2023, 322 (2): 691- 711.
18 CASTRO P M . New MINLP formulation for the multiperiod pooling problem[J]. AIChE Journal, 2015, 61 (11): 3728- 3738.
19 JOLY M , MORO L F L , PINTO J M . Planning and scheduling for petroleum refineries using mathematical programming[J]. Brazilian Journal of Chemical Engineering, 2002, 19 (2): 207- 228.
20 ZAMORA J M , GROSSMANN I E . A branch and contract algorithm for problems with concave univariate, bilinear and linear fractional terms[J]. Journal of Global Optimization, 1999, 14, 217- 249.
21 MEYER C A , FLOUDAS C A . Global optimization of acombinatorially complex generalized pooling problem[J]. AIChE Journal, 2006, 52 (3): 1027- 1037.
22 CASTILLO P , CASTRO P M , MAHALEC V . Global optimization algorithm for large-scale refinery planning models with bilinear terms[J]. Industrial & Engineering Chemistry Research, 2017, 56 (2): 530- 548.
23 LOTERO I , TRESPALACIOS F , GROSSMANN I E , et al. An MILP-MINLP decomposition method for the global optimization of a source based model of the multiperiod blending problem[J]. Computers & Chemical Engineering, 2016, 87, 13- 35.
24 RUTH M , FLOUDAS CHRISTODOULOS A . Advances for the pooling problem: modeling, global optimization, and computational studies survey[J]. Applied and Computational Mathematics, 2009, 8, 3- 22.
25 ACHTERBERG T , KOCH T , MARTIN A . Branching rules revisited[J]. Operations Research Letters, 2005, 33 (1): 42- 54.
[1] Minglei FANG,Defeng DING,Ming WANG,Yuting SHENG. A new modified efficient Shamanskii-like Levenberg-Marquardt method for solving systems of nonlinear equations [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(8): 118-126.
[2] . Interval algorithm for mixed integer nonlinear two-level programming problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(2): 9-17.
[3] ZHENG Xiu-yun, SHI Jia-rong. A globally convergent conjugate gradient method with Armijo line search [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(1): 98-101.
[4] WANG Kai-rong, GAO Pei-ting. Two mixed conjugate gradient methods based on DY [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2016, 51(6): 16-23.
[5] LI Mei-xia1,2, LIU Qian3. Properties of a new kind of exact augmented Lagrangian function [J]. J4, 2013, 48(12): 90-95.
[6] SUN Min . A modified super-memory gradient method with angle property [J]. J4, 2008, 43(6): 68-70 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] HUANG Xian-li,LUO Dong-mei. Feature impprtance study on  transfer learning of  sentiment  text  classification[J]. J4, 2010, 45(7): 13 -17 .
[2] GAO Zheng-hui, LUO Li-ping. Philos-type oscillation criteria for third-order nonlinear functional differential equations with distributed delays and damped terms[J]. J4, 2013, 48(4): 85 -90 .
[3] LI Zhi-rong . Computational formulae of generalized m-th-order Bell numbers and generalized m-order orderd Bell numbers[J]. J4, 2007, 42(2): 59 -63 .
[4] XU Chun-hua,GAO Bao-yu,LU Lei,XU Shi-ping,CAO Bai-chuan,YUE Qin-yan and ZHANG Jian . Study of chemically enhanced primary treatment of wastewater received by urban rivers[J]. J4, 2006, 41(2): 116 -120 .
[5] CHEN Hong-yu1, ZHANG Li2. The linear 2-arboricity of planar graphs without 5-, 6-cycles with chord[J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2014, 49(06): 26 -30 .
[6] YANG Ying, JIANG Long*, SUO Xin-li. Choquet integral representation of premium functional and related properties on capacity space[J]. J4, 2013, 48(1): 78 -82 .
[7] XIE Yun-long,DU Ying-ling . Function S-rough sets and integral metric of laws[J]. J4, 2007, 42(10): 118 -122 .
[8] WANG Yi ,LIU Ai-lian . Cobweb models on time scales[J]. J4, 2007, 42(7): 41 -44 .
[9] ZUO Jinming. An alternating group method for a fifthorder dispersive equation[J]. J4, 2009, 44(4): 79 -83 .
[10] CHOU Hua-Hai, TAO Yun-Fei, WANG Zhi-Gang, CHEN Shi-Yang. The exponential stability of a nonlinear functionaldifferential system[J]. J4, 2009, 44(9): 84 -89 .