JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (2): 14-18.doi: 10.6040/j.issn.1671-9352.0.2023.320

Previous Articles    

n-weak injective objects in Abelian category

SI Huiru, YAO Hailou*   

  1. Department of Mathematics, Faculty of Science, Beijing University of Technology, Beijing 100124, China
  • Published:2025-02-14

Abstract: In the context of Abelian categories, the introduction of n-super finitely presented objects is employed to characterize n-weak injective objects, thereby some fundamental properties of n-weak injective objects are established. The n-weak injective dimensions of objects in an Abelian category is defined, and the connections between the n-weak injective dimensions of three objects in a short exact sequence and the cotorsion theory are discussed.

Key words: Abelian category, n-weak injective object, n-weak injective dimension

CLC Number: 

  • O153.3
[1] GAO Zhenghui, WANG Fanggui. Weak injective and weak flat modules[J]. Communications in Algebra, 2015, 43(9):3857-3868.
[2] AMINI M, AMZIL H, BENNIS D. Category of n-weak injective and n-weak flat modules with respect to special super presented modules[J]. Communications in Algebra, 2021, 49(11):4924-4939.
[3] EILENBERG S, MAC LANE S. General theory of natural equivalences[J]. Transactions of the American Mathematical Society, 1945, 58:231-294.
[4] GABRIEL P. Des categories Abeliennes[J]. Bulletin de la Société Mathématique de France, 1962, 90:323-448.
[5] POPESCU N. Abelian categories with applications to rings and modules[J]. Journal of Heart Transfer, 1973, 121(2):253-260.
[6] MITCHELL B. Theory of categories[M]. New York: Academic Press, 1965:1-237.
[7] 章璞. 三角范畴与导出范畴[M]. 北京:科学出版社,2015. ZHANG Pu. Triangular category and derived category[J]. Beijing: Science Press, 2015.
[8] BLERL R. Homological dimension of discrete groups[M]. London: Mathematics Department, Queen Mary College, 1976.
[9] BREAZ S, ŽEMLICKA J. The defect functor of a homomorphism and direct unions[J]. Algebras and Representation Theory, 2016, 19(1):181-208.
[1] Jinping LUO,Li LIANG. Relative Gorenstein projective objects in comma categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(2): 100-104, 119.
[2] YAN Mei-qi, YAO Hai-lou. Pure projective dimensions on recollements of Abelian categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(8): 1-5.
[3] CHEN Mei-hui, LIANG Li. Strongly Gorenstein projective objects in comma categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(8): 81-85.
[4] FENG Yao-yao, YAO Hai-lou. Finitely presented dimensions on recollements of Abelian categories [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(2): 89-94.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!