JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2025, Vol. 60 ›› Issue (4): 29-39.doi: 10.6040/j.issn.1671-9352.0.2024.168
LIANG Juan1, ZHANG Jinzhu1*, CUI Liang2
CLC Number:
[1] CONSOLO G, VALENTI G. Secondary seed dispersal in the Klausmeier model of vegetation for sloped semi-arid environments[J]. Ecological Modeling, 2019, 402(24):66-75. [2] SHERRATT J A. An analysis of vegetation stripe formation in semi-arid landscapes[J]. Journal of Mathematical Biology, 2005, 51(2):183-197. [3] LEFEVER R, LEJEUNE O. On the origin of tiger bush[J]. Bulletin of Mathematical Biology, 1997, 59(2):263-294. [4] KLAUSMEIER C A. Regular and irregular patterns in semiarid vegetation[J]. Science, 1999, 284(5421):1826-1828. [5] HILLERISLAMBERS R, RIETKERK M, VAN DEN BOSCH F, et al. Vegetation pattern formation in semi-arid grazing systems[J]. Ecology, 2001, 82(1):50-61. [6] ABEL C, HORION S, TAGESSON T, et al. The human-environment nexus and vegetation-rainfall sensitivity in tropical drylands[J]. Nature Sustainability, 2021, 4:25-32. [7] HUANG Shengzhi, ZHENG Xudong, MA Lan, et al. Quantitative contribution of climate change and human activities to vegetation cover variations based on GA-SVM mode[J]. Journal of Hydrology, 2020, 584:124687. [8] MAHMOUDd S H, GAN T Y. Impact of anthropogenic climate change and human activities on environment and ecosystem services in arid regions[J]. Science of the Total Environment, 2018, 633(15):1329-1344. [9] HOU Lifeng, SUN Guiquan, PERC M. The impact of heterogeneous human activity on vegetation patterns in arid environments[J]. Communications in Nonlinear Science and Numerical Simulation, 2023, 126:107461. [10] SUN Guiquan, WANG Cuihua, CHANG Lili, et al. Effects of feedback regulation on vegetation patterns in semi-arid environments[J]. Applied Mathematical Modelling, 2018, 61:200-215. [11] 欧阳颀. 非线性科学与斑图动力学导论[M]. 北京:北京大学出版社,2010. OUYANG Qi. Introduction to nonlinear science and pattern dynamics[M]. Beijing: Peking University Press, 2010. [12] RIETKERK M, DEKKER S C, De RUITER P C, et al. Self-organized patchiness and catastrophic shifts in ecosystems[J]. Science, 2004, 305(5692):1926-1929. [13] CHANG Lili, GONG Wei, JIN Zhen, et al. Sparse optimal control of pattern formations for an sir reaction diffusion epidemic mode[J]. SIAM Journal on Applied Mathematics, 2022, 82(5):1764-1790. [14] BARBU V. Analysis and control of nonlinear infinite dimensional systems[M]. Amsterdam: Elsevier, 1993. [15] GARVIE M R, TRENCHEA C. Optimal control of a nutrient-phytoplankton-zooplankton-fish system[J]. SIAM Journal on Control and Optimization, 2007, 46(3):775-791. [16] CASAS E, HERZOG R, WACHSMUTH G. Optimality conditions and error analysis of semilinear elliptic control problems with L1 cost functiona[J]. SIAM Journal on Optimization, 2012, 22:795-820. [17] TROLTZSCH F. Optimal control of partial differential equations: theory, methods, and applications[M]. Rhode Island: American Mathematical Society, 2010. [18] CAO Shixiong, CHEN Li, SHANKMAN D, et al. Excessive reliance on afforestation in Chinas arid and semi-arid regions: lessons in ecological restoration[J]. Earth-Science Reviews, 2011, 104(4):240-245. |
[1] | HAN Jingyi, CHANG Hao, CHEN Zhen. Optimal investment and benefit payment adjustment strategy for target benefit pension plan under 4/2 stochastic volatility model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2025, 60(3): 49-59. |
[2] | Le DU,Liu YANG,Tao ZHANG. Identification of nonlinear heat transfer law of heat conduction equation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(8): 56-66. |
[3] | Haodong LIU,Chi ZHANG. Optimal monetary policy with a zero lower bound on the nominal interest rate under a continuous-time framework [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(1): 11-16. |
[4] | Xiao WANG,Chongyang LIU,Dianzhong HU,Gang LIU. Delay optimal control of 1,3-propanediol batch fermentation [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2024, 59(1): 124-131, 138. |
[5] | QI Huimin, LUO Zhixue. Optimal harvesting for periodic age-structured population dynamics [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(5): 46-52. |
[6] | DU Fang-fang, SUN Tong-jun. Cubic B-spline finite element method for parabolic optimal control problems [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2023, 58(4): 40-48. |
[7] | LI Xing-yu, DUAN Jing-yao. Intuitionistic similarity based on triangular norms and its application [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(4): 37-47. |
[8] | LI Na, LUO Zhi-xue. Optimal control for competing species with diffusion and size-structure [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2022, 57(1): 69-76. |
[9] | Hai-hui WANG,Lu-yao ZHAO,Ping LI. ε-language approximation of nondeterministic fuzzy finite automata [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(3): 37-43. |
[10] | ZHENG Xiu-juan, LUO Zhi-xue, ZHANG Hao. Optimal control of nonlinear competing populations based on the size-structure [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(11): 51-60. |
[11] | XU Yang, ZHAO Chun. Optimal control of competitive population system with hierarchical structure [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2021, 56(11): 61-70. |
[12] | YANG Cai-jie, SUN Tong-jun. Crank-Nicolson finite difference method for parabolic optimal control problem [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(6): 115-121. |
[13] | ZHENG Rui-rui, SUN Tong-jun. A priori error estimates of finite element methods for an optimal control problem governed by a one-prey and one-predator model [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2020, 55(1): 23-32. |
[14] | LIANG Li-yu, LUO Zhi-xue. Optimal control of a size-structured system with two species in periodic environments [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2019, 54(9): 69-75. |
[15] | CAO Xue-jing, LUO Zhi-xue. Optimal control of forest evolution system in polluted environment [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2018, 53(7): 15-20. |
|