JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2026, Vol. 61 ›› Issue (1): 26-35.doi: 10.6040/j.issn.1671-9352.8.2024.009
Previous Articles Next Articles
YU Lei1, SUN Yi2, HUA Jinming2, LI Laquan3
CLC Number:
| [1] 邱海波,杜斌,刘大为,等. 全身炎症反应综合征与多器官功能障碍综合征的临床研究[J]. 中华外科杂志,1997,35(7):402-405. QIU Haibo, DU Bin, LIU Dawei, et al. Clinical study on systemic inflammatory response syndrome and multiple organ dysfunction syndrome [J]. Chinese Journal of Surgery, 1997, 35(7):402-405. [2] GAUER R, FORBES D, BOYER N. Sepsis:diagnosis and management[J]. American Family Physician, 2020, 101(7):409-418. [3] WANG Yuhe, SHAN Gao, LEI Hong, et al. Prognostic impact of blood urea nitrogen to albumin ratio on patients with sepsis: a retrospective cohort study[J]. Scientific Reports, 2023, 13(1):10013. [4] COX D R. Regression models and life-tables[J]. Journal of the Royal Statistical Society(Series B: Methodological), 1972, 34(2):187-220. [5] DIAS A, GOMEZ V C, VIOLA L R, et al. Fever is associated with earlier antibiotic onset and reduced mortality in patients with sepsis admitted to the ICU[J]. Scientific Reports, 2021, 11(1):23949. [6] HU Jing, LÜ Chenwei, HU Xinxing, et al. Effect of hypoproteinemia on the mortality of sepsis patients in the ICU: a retrospective cohort study[J]. Scientific Reports, 2021, 11(1):24379. [7] VINCENT J L, MENDONCA A, CANTRAINE F, et al. Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study[J]. Critical Care Medicine, 1998, 26(11):1793-1800. [8] FORD D W, GOODWIN A J, SIMPSON A N, et al. A severe sepsis mortality prediction model and score for use with administrative data[J]. Critical Care Medicine, 2016, 44(2):319-327. [9] CARRARA M, BASELLA G, FERRARIO M. Mortality prediction model of septic shock patients based on routinely recorded data[J]. Computational and Mathematical Methods in Medicine, 2015, 2015(1):761435. [10] KHWANNIMIT B, BHURAVANONTACHAI R, VATTANVANIT V. Validation of the sepsis severity score compared with updated severity scores in predicting hospital mortality in sepsis patients[J]. Shock, 2017, 47(6):720-725. [11] HOU Nianzong, LI Mingzhe, HE Lu, et al. Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost[J]. Journal of Translational Medicine, 2020, 18(1):462-462. [12] PERNG J W, KAO I H, KUNG C T, et al. Mortality prediction of septic patients in the emergency department based on machine learning[J]. Journal of Clinical Medicine, 2019, 8(11):1906. [13] 化盈盈,张岱墀,葛仕明. 深度学习模型可解释性的研究进展[J]. 信息安全学报,2020,5(3):1-12. HUA Yingying, ZHANG Daichi, GE Shiming. Research progress in the interpretability of deep learning models[J]. Journal of Information Security, 2020, 5(3):1-12. [14] 陈珂锐,孟小峰. 机器学习的可解释性[J]. 计算机研究与发展,2020,57(9):1971-1986. CHEN Kerui, MENG Xiaofeng. Interpretability of machine learning[J]. Journal of Computer Research and Development, 2020, 57(9):1971-1986. [15] 曾春艳,严康,王志锋,等. 深度学习模型可解释性研究综述[J]. 计算机工程与应用,2021,57(8):1-9. ZENG Chunyan, YAN Kang, WANG Zhifeng, et al. A review of research on the interpretability of deep learning models[J]. Computer Engineering and Applications, 2021, 57(8):1-9. [16] RAIKOMAR A, DEAN J, KOHANE I. Machine learning in medicine[J]. New England Journal of Medicine, 2019, 380(14):1347-1358. [17] LIM B, ARIK S O, LOEFF N, et al. Temporal fusion transformers for interpretable multi-horizon time series forecasting[J]. International Journal of Forecasting, 2021, 37(4):1748-1764. [18] HOOKER S, ERHAN D, KINDERMANS P J, et al. A benchmark for interpretability methods in deep neural networks[C] //Advances in Neural Information Processing Systems. Vancouver: Curran Associates Incorporated, 2019. [19] MENG C, TRINH L, XU N, et al. Interpretability and fairness evaluation of deep learning models on MIMIC-IV dataset[J]. Scientific Reports, 2022, 12:7166. [20] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for image recognition[C] //2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vega: Curran Associates Incorporated, 2016:770-778. [21] MITCHELL R, COOPER J, FRANK E, et al. Sampling permutations for Shapley value estimation[J]. Journal of Machine Learning Research, 2022, 23(43):1-46. [22] HE Shengfeng, ZHE Huang, LIU Wenxi, et al. SuperCNN: a superpixelwise convolutional neural network for salient object detection[J]. International Journal of Computer Vision, 2015, 115(3):330-344. [23] ZAFEIRIOU A, KALLIPOLITIS A, MAGLOGIANNIS I. Ensembling to leverage the interpretability of medical image analysis systems[J]. IEEE Access, 2023,11:76437-76447. [24] SUNDARARAJAN M, TALY A, YAN Q. Axiomatic attribution for deep networks[C] //International Conference on Machine Learning. Sydney: PMLR, 2017:3319-3328. [25] BACH S, BINDER A, MONTAVON G, et al. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation[J]. Public Library of Science One, 2015, 10(7):e0130140. [26] HOCHULI J, HELBLING A, SKAIST T, et al. Visualizing convolutional neural network protein-ligand scoring[J]. Journal of Molecular Graphics & Modelling, 2018, 84:96-108. [27] TOLLES J, MEURER W J. Logistic regression: relating patient characteristics to outcomes[J]. The Journal of the American Medical Association, 2016, 316(5):533-534. [28] OSMAN A I A, AHMED A N, CHOW M F, et al. Extreme gradient boosting(Xgboost)model to predict the groundwater levels in selangor malaysia[J]. Ain Shams Engineering Journal, 2021, 12(2):1545-1556. [29] MASCARO J, ASNER G P, KNAPP D E, et al. A tale of two “forests”: random forest machine learning AIDS tropical forest carbon mapping[J]. Public Library of Science One, 2014, 9(1):E85993. [30] FRIEDMAN J H. Greedy function approximation: a gradient boosting machine[J]. The Annals of statistics, 2001, 29(5):1189-1232. |
|