JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE) ›› 2014, Vol. 49 ›› Issue (10): 72-77.doi: 10.6040/j.issn.1671-9352.0.2013.548

Previous Articles     Next Articles

Characterization of bicompletable interval-valued fuzzy quasi-metric spaces

LU Han-chuan, LI Sheng-gang   

  1. College of Mathematics and Information Science, Shaanxi Normal University, Xi'an 710062, Shanxi, China
  • Received:2013-11-03 Online:2014-10-20 Published:2014-11-10

Abstract: We generalize the notions of interval-valued fuzzy metric in the quasi-metric background. The main results of this paper are: (1) the isometric extension theorem of interval-valued fuzzy quasi-metric space is given; (2) it is proved that every interval-valued fuzzy quasi-metric space has bicompletion and is unique up to isometry; (3) a method to construct the interval-valued fuzzy quasi-metric space bicompletion is given, and a equivalent characterization of interval-value fuzzy quasi-metric spaces is obtained which can be bicompletable.

Key words: interval-valued fuzzy quasi-metric bicompletion, isometry, interval-valued fuzzy quasi-metric spaces, bi-Cauchy sequence

CLC Number: 

  • O189.13
[1] KRAMOSIL I, MICHLEK J. Fuzzy metric and statistical metric spaces[J]. Kybernetika, 1975, 11(5):336-344.
[2] GEORGE A, VEERAMANI P. On some results in fuzzy metric spaces[J]. Fuzzy Sets and Systems, 1994, 64(3):395-399.
[3] DENG Zike. Fuzzy pseudo metric spaces[J]. Journal of Mathematical Analysis and Applications, 1982, 86(1):74-95.
[4] ERCEG M A. Metric spaces in fuzzy set theory[J]. Journal of Mathematical Analysis and Applications, 1979, 69(1):205-230.
[5] KALEVA O, SEIKKALA S. On fuzzy metric spaces[J]. Fuzzy Sets and Systems, 1984, 12(3):215-229.
[6] GEORGE A, VEERAMANI P. On some results of analysis for fuzzy metric spaces[J]. Fuzzy Sets and Systems, 1997, 90(3):365-368.
[7] GEORGE A, VEERAMANI P. Some theorems in fuzzy metric spaces[J].Journal of Fuzzy Mathematics, 1995, 3:933-940.
[8] GREGORI V, ROMAGUERA S. Some properties of fuzzy metric spaces[J]. Fuzzy Sets and Systems, 2000, 115(3):485-489.
[9] ZADEH L A. The concept of a linguistic variable and its application to approximation reasoning I[J]. Information Sciences, 1975, 8(3):199-249.
[10] SHEN Yonghong, LI Haifeng, WANG Faxing. On interval-valued fuzzy metric spaces[J]. International Journal of Fuzzy Systems, 2012, 14(1):35-44.
[11] KVNZI H P A. Nonsymmetric distances and their associated topologies: about the origins of basic ideas in the area of asymmetric topology[M]// Handbook of the history of general topology. Dordrecht: Kluwer, 2001: 853-968.
[12] GREGORI V, ROMAGUERA S, VEERAMANI P. A note on intuitionistic fuzzy metric spaces[J]. Chaos, Solitons and Fractals, 2006, 28(4):902-905.
[13] MOHAMAD A. Fixed-point theorems in intuitionistic fuzzy metric spaces[J]. Chaos, Solitons and Fractals, 2007, 34(5):1689-1695.
[14] HONG D H, LEE S. Some algebraic properties and a distance measure for interval-valued fuzzy numbers[J]. Information Sciences, 2002, 148(1-4):1-10.
[15] WANG Guijun, LI Xiaoping. Correlation and information energy of interval-valued fuzzy numbers[J]. Fuzzy Sets and Systems, 1999, 103(1):169-175.
[16] FLETCHER P, LINDGREN W F. Quasi-Uniform spaces[M]. New York: Marcel Dekker, 1982.
[17] GREGORI V, ROMAGUERA S. Characterizing completable fuzzy metric spaces[J]. Fuzzy Sets and Systems, 2004, 144(3):411-420.
[1] LIU Xiao-wei. Linear extension of isometries between the unit spheres of two-dimensional normed spaces [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2017, 52(2): 44-48.
[2] KONG Liang, CAO Huai-xin. Characterization and perturbations of ε-approximate square isosceles-orthogonality preserving mappings [J]. JOURNAL OF SHANDONG UNIVERSITY(NATURAL SCIENCE), 2015, 50(06): 75-82.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!