您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2014, Vol. 49 ›› Issue (1): 50-53.doi: 10.6040/j.issn.1671-9352.0.2013.305

• 论文 • 上一篇    下一篇

基于野韭菜挥发性成分的色谱保留指数神经网络预测

堵锡华,史小琴,冯长君,李亮   

  1. 徐州工程学院化学化工学院,江苏 徐州 221111
  • 收稿日期:2013-06-25 出版日期:2014-01-20 发布日期:2014-01-15
  • 作者简介:堵锡华(1963-),男,教授,主要从事药物、食品构效关系研究. Email:dxh@xzit.edu.cn
  • 基金资助:

    江苏省自然科学基金资助项目(09KJD150012);徐州市科技计划资助项目(XX10A060);徐州市绿色技术重点实验室资助项目(SYS2012009)

rediction of chromatograph retention index by artificial neural  network by #br# study on volatile constituents of wild chinese chives

DU Xi-hua, SHI Xiao-qin, FENG Chang-jun, LI Liang   

  1. School of Chemistry and Chemical Engineering,Xuzhou Institute of Technology, Xuzhou 221111, Jiangsu, China
  • Received:2013-06-25 Online:2014-01-20 Published:2014-01-15

摘要:

为研究野韭菜挥发性成分的性质,预测其色谱保留指数,运用MATLAB相关自编程序计算得到了野韭菜挥发性成分的分子形状指数和电性拓扑态指数,将这两类参数作为分子结构描述参数,借助多元逐步回归法优化筛选了其中结构参数2K、3K、4K、I2和I6,建立了野韭菜挥发性成分色谱保留指数的QSRR模型,相关系数为0963,通过对模型的稳定性和预测能力进行检验,检验的相关系数r也稳定在0.963左右。用这5个筛选出的结构参数作为人工神经网络的输入层参数,采用521的网络神经结构,利用BP算法建构神经网络模型,总相关系数达到0.996的优级相关,利用此模型计算得到的预测值与实验值吻合度较为理想,相对平均误差仅为1.67%,结果显示BP神经网络所得结果优于多元线性回归方法。

关键词: 人工神经网络, 挥发性成分, 野韭菜, 定量结构-保留相关性, 色谱保留指数

Abstract:

In order to study on the features of aromatic composition in wild Chinese chives and predict its chromatographic retention index of volatile constituents molecules, self-designed programs are run in MATLAB to get the molecular shape index and electrotopological state index of volatile constituents of wild Chinese chives. The two indexes are used as molecular structure parameters, and by using multiple stepwise regression method, we screen and optimize the structure parameters 2K、3K、4K、I2 and I6 to establish a QSRR model of chromatographic retention index of volatile constituents of wild Chinese chives. The correlation coefficient of regression equation reaches 0.963. By examining the stability and predictive ability of the model, we find the correlation coefficient r of the inspection is stable at around 0.963. The five structural parameters are used as the input neurons of the artificial neural network and a 521 network architecture is employed. A satisfying neural network model is constructed with the back-propagation(BP) algorithm. The gross correlation coefficient R is 0. 996,which shows a significant correlation. The forecasted values is basically tally with experimental values that we get from the model with only 1.67% mean relative error. It can be seen that the results of back-propagation network are better than those of multiple linear regression methods.

Key words: quantitative structureretention relationship (QSRR), wild Chinese chive, chromatograph retention index, volatile constituents, artificial neural network(ANN)

中图分类号: 

  • TS207
[1] 刘新华,伍平. 分子的结构矩阵及其与物性的相关性研究[J]. J4, 2012, 47(5): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!