您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2015, Vol. 50 ›› Issue (03): 32-39.doi: 10.6040/j.issn.1671-9352.0.2014.444

• 论文 • 上一篇    下一篇

移动机器人车载摄像机位姿的高精度快速求解

唐庆顺1, 吴春富1, 李国栋1, 王小龙1, 周风余2   

  1. 1. 龙岩学院物理与机电工程学院, 福建 龙岩 364012;
    2. 山东大学控制科学与工程学院, 山东 济南 250061
  • 收稿日期:2014-10-09 修回日期:2015-01-16 出版日期:2015-03-20 发布日期:2015-03-13
  • 通讯作者: 周风余(1969- ),男,博士,教授,研究方向为智能机器人、智能控制方法等.E-mail:zhoufengyu@sdu.edu.cn E-mail:zhoufengyu@sdu.edu.cn
  • 作者简介:唐庆顺(1965- ),男,副教授,研究方向为智能机器人、机电一体化和机器视觉.E-mail:qingshun951128@163.com
  • 基金资助:
    国家自然科学基金资助项目(61375084);福建省教育厅科技项目(JK2014049)

An accurate and fast pose estimation algorithm foron-board camera of mobile robot

TANG Qing-shun1, WU Chun-fu1, LI Guo-dong1, WANG Xiao-long1, ZHOU Feng-yu2   

  1. 1. School of Physics and Mechanical and Electrical Engineering, Longyan College, Longyan 364012, Fujian, China;
    2. School of Control Science and Engineering, Shandong University, Jinan 250061, Shandong, China
  • Received:2014-10-09 Revised:2015-01-16 Online:2015-03-20 Published:2015-03-13

摘要: 在分析移动机器人车载摄像机位姿的特殊性质的基础上,根据摄像机的等效转轴构造辅助旋转矩阵,利用该旋转矩阵将原始待分解本质矩阵和单应矩阵转换为一类简单的、可通过初等数学运算进行分解的本质矩阵和单应矩阵。仿真实验的结果表明,该车载摄像机位姿估计算法较传统方法具有更高的精度和更快的运算速度,对摄像机等效转轴的扰动也具有很好的鲁棒性。此外,分解出的可能解的数目较传统算法减少了一半,且在除诱导单应阵的空间景物平面与地面垂直的情况下,均能直接得到移动机器人的唯一转角,为移动机器人姿态控制提供了极大的便利。

关键词: 移动机器人, 位姿估计, 单应矩阵分解, 车载摄像机, 本质矩阵分解

Abstract: An accurate and fast pose estimation problem for on-board camera of mobile robot is investigated. Firstly the special properties of the pose for on-board camera of mobile robot are analyzed. Secondly, an auxiliary rotation matrix is constructed using the on-board camera's equivalent rotation axis, which is utilized to turn the initial essential matrix and homography matrix into a simplified kind that can be decomposed through elementary mathematical operations. Finally, some simulation experiments are designed to verify the algorithm's rapidity, accuracy and robustness. The experimental results show that compared to traditional algorithms, the proposed algorithm can acquire higher accuracy and faster calculating speed, together with the robustness to the disturbance of the on-board camera's equivalent rotation axis. In addition, the number of possible solutions are reduced one half, and the unique rotation angle of the mobile robot can be determined except for the condition that the 3D planar scene structure and the ground are perpendicular, which can provide great convenience for controlling the pose of the mobile robot.

Key words: pose estimation, homography matrix decomposition, on-board camera, essential matrix decomposition, mobile robot

中图分类号: 

  • TP24.2
[1] FUSIELLO A, TRUCCO E, VERRI A. A compact algorithm for rectification of stereo pairs[J]. Machine Vision and Applications, 2000, 12(1):16-22.
[2] ZHI Qi, COOPERSTOCK J R. Toward dynamic image mosaic generation with robustness to parallax[J]. IEEE Transactions on Image Processing, 2012, 21(1):366-378.
[3] POLLEFEYS M, KOCH R, VERGAUWEN M, et al. Automated reconstruction of 3D scenes from sequences of images[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2000, 55(4):251-267.
[4] AZUMA R, BAILLOT Y, BEHRINGER R, et al. Recent advances in augmented reality[J]. IEEE Transactions on Computer Graphics and Applications, 2001, 21(6):34-47.
[5] MALIS E, CHAUMETTE F. 2 1/2 D visual servoing with respect to unknown objects through a new estimation scheme of camera displacement[J]. International Journal of Computer Vision, 2000, 37(1):79-97.
[6] SILVEIRA G, MALIS E, RIVES P. An efficient direct approach to visual SLAM[J]. IEEE Transactions on Robotics, 2008, 24(5):969-979.
[7] ZHANG Xue, FANG Yongchun, LIU Xi. Motion-estimation-based visual servoing of nonholonomic mobile robots[J]. IEEE Transactions on Robotics, 2011, 27(6):1167-1175.
[8] DIXON W E, DAWSON D M, ZERGEROGLU E, et al. Adaptive tracking control of a wheeled mobile robot via an uncalibrated camera system[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2001, 31(3):341-352.
[9] HARTLEY R I. In defense of the eight-point algorithm[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(6):580-593.
[10] NISTR D. An efficient solution to the five-point relative pose problem[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(6):756-770.
[11] MA Yi, KOSECK J, SASTRY S. Optimization criteria and geometric algorithms for motion and structure estimation[J]. International Journal of Computer Vision, 2001, 44(3):219-249.
[12] HELMKE U, HPER K, LEE P Y, et al. Essential matrix estimation using Gauss-Newton iterations on a manifold[J]. International Journal of Computer Vision, 2007, 74(2):117-136.
[13] HARTLEY R, ZISSERMAN A. Multiple view geometry in computer vision[M]. Cambridge:Cambridge University Press, 2003.
[14] TORR P H S, ZISSERMAN A. MLESAC: a new robust estimator with application to estimating image geometry[J]. Computer Vision and Image Understanding, 2000, 78(1):138-156.
[15] LONGUET-HIGGINS H C. A computer program for reconstructing a scene from two projections[J]. Nature, 1981, 293:133-135.
[16] TSAI R Y, HUANG T S. Uniqueness and estimation of 3D motion parameters of rigid bodies with curved surfaces[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1984, 6:13-27.
[17] HARTLEY R I. Estimation of relative camera positions for uncalibrated cameras[C]//Proceedings of 2nd European Conference on Computer Vision. Berlin: Springer-Verlag, 1992: 579-587.
[18] WANG Wei, TSUI H T. A SVD decomposition of essential matrix with eight solutions for the relative positions of two perspective cameras[C]//Proceedings of the 15th International Conference on Pattern Recognition. Los Alamitos: IEEE Computer Society, 2000, 1:362-365.
[19] FAUGERAS O D, LUSTMAN F. Motion and structure from motion in a piecewise planar environment[J]. International Journal of Pattern Recognition and Artificial Intelligence, 1988, 2(3):485-508.
[20] ZHANG Zhongfei, HANSON A R. 3D reconstruction based on homography mapping[C]// Proceedings of ARPA96.[S.l.]:[s.n.], 1996:1007-1012.
[21] MALIS E, VARGAS M. Deeper understanding of the homography decomposition for vision-based control[R]. Research Report INRIA Sophia-Antipolis, 2007.
[22] LI Guodong, TIAN Guohui, WANG Hongjun, et al. A fast homography decomposition algorithm in the case of known normal to the scene plane[J]. Control and Decision, 2014, 29(4):735-738.
[23] ZHANG Xuebo, FANG Yongchun, MA Bojun, et al. A fast homography decomposition technique for visual servo of mobile robots[C]//Proceedings of the 27th Chinese Control Conference.Piscataway: IEEE, 2008:404-409.
[24] 李国栋, 田国会, 王洪君. 服务机器人智能空间中QR Code人工地标的设计、定位与识读[J]. 高技术通讯, 2013, 23(12):1275-1283. LI Guodong, TIAN Guohui, WANG Hongjun. Design, localization and recognition of the QR code-based artificial landmark in service robot intelligent space[J]. Chinese High Technology Letters, 2013, 23(12):1257-1283.
[1] 杨元慧,李国栋,吴春富,王小龙. 单目视觉SLAM车载摄像机快速位姿估计及景物重构[J]. 山东大学学报(理学版), 2016, 51(12): 116-124.
[2] 吴春富1,唐庆顺1,谢煌生1,周风余2*. 一种新型的本质矩阵解析分解算法[J]. 山东大学学报(理学版), 2014, 49(03): 31-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!