您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (5): 48-60.doi: 10.6040/j.issn.1671-9352.0.2015.164

• • 上一篇    下一篇

转动恒星引力昏暗效应及演化研究

邰丽婷1,宋汉峰1,2,3*,王江涛1,詹琼1   

  1. 1.贵州大学理学院物理系, 贵州 贵阳 550025;2.中国科学院天体结构与演化重点实验室, 云南 昆明 650011;3.中科院国家天文台-贵州大学天文联合研究中心, 贵州 贵阳 550025
  • 收稿日期:2015-04-17 出版日期:2016-05-20 发布日期:2016-05-16
  • 通讯作者: 宋汉峰(1974— ),男,博士,教授,研究方向为天体物理. E-mail:songhanfeng@163.com E-mail:tailiting1212@163.com
  • 作者简介:邰丽婷(1990— ),女,硕士研究生,研究方向为天体物理. E-mail:tailiting1212@163.com
  • 基金资助:
    国家自然科学基金资助项目(11463002);中科院天体结构与演化重点实验室开放课题资助项目(OP201405);贵州大学自然科学青年基金资助项目(贵大自青基合字(2013)06号);贵州大学研究生创新基金资助项目(研理工2015055)

The investigation of the gravity darkening and evolution in rotating star

TAI Li-ting1, SONG Han-feng1,2,3*, WANG Jiang-tao1, ZHAN Qiong1   

  1. 1. Department of Physics, College of Science, Guizhou University, Guiyang 550025, Guizhou, China;
    2. Key Laboratory for the Structure and Evolution of Celestial, Objects, Chinese Academy of Sciences, Kunming 650011, Yunnan, China;
    3. Joint Research Centre for Astronomy, National Astronomical Observatory-Guizhou University, Guiyang 550025, Guizhou, China
  • Received:2015-04-17 Online:2016-05-20 Published:2016-05-16

摘要: 转动和潮汐效应是影响恒星结构和演化非常重要的物理因素。根据Achernar的观测数据,用考虑转动和潮汐效应的单、双星模型,研究了Achernar引力昏暗现象。发现转动双星模型比单星模型更能符合Achernar的赤道和极半径之比观测值。计算结果表明,初始转动角速度快的恒星,其等价半径和中心密度在主序阶段的开始至40 Myr较大,随后变小。同时,由于初始转动角速度大的恒星,星风携带自转角动量损失多,造成后期演化角速度变小。另外,转动效应能增加恒星的中心集中度,但减少恒星的四极矩、回旋半径、中心温度、氢燃烧产能率,使转动恒星向赫罗图的低温和低光度演化。

关键词: 转动, 潮汐, 引力昏暗, 恒星结构与演化

Abstract: Rotation and tide are two important factors which have very important impact on the stellar structure and evolution. Based on the observational data of Achernar, we have investigated the gravitational darkening with the models including the effects of rotation and tide. We find that the rotating binaries can be more consistent with the observations of the ratio of equatorial radius to the polar one than the single rotating model. It is shown that the star with the initial larger angular velocity has bigger radius and central density at the beginning and middle of the main sequence, and it has smaller radius and central density due to the large loss of spin angular momentum in subsequent evolution. Also, we have found that rotation can make the star more centrally condensed and enlarged in size, decreasing the quadrupolar momentum, the gyration radius, central temperature, and the rate of the hydrogen production energy in the stellar core. The star shifts towards low temperature and luminosity in the HR diagram in rotating model.

Key words: gravitational darkening, stellar structure and evolution, tide, rotation

中图分类号: 

  • P153
[1] 黄润乾.恒星物理[M].北京:中国科学技术出版社,2006:313-314.
[2] PACYNSKI B. Evolutionary processes in close binary systems[J]. ARA&A, 1971, 9:183-208.
[3] KIPPENHAHN R, THOMAS H C. In steller rotation[M]. Holland: D Reidal Publ Co Dordrecht, 1970.
[4] ENDAL A S, SOFIA S. The evolution of rotating stars I: Method and exploratory calculations for a 7-solar-mass star[J]. ApJ, 1976, 210(15):184-198.
[5] PINSONNEAULT M H, KAWALER S D, SOFIA S, et al. Evolutionary models of the rotating sun[J]. ApJ, 1989, 338:424-452.
[6] PINSONNEAULT M H, KAWALER S D, DEMARQURE P. Rotation of low-mass stars-A new probe of stellar evolution[J]. ApJS, 1990, 74:501-550.
[7] PINSONNEAULT M H, DELIYANNIS C P, DEMARQURE P. Evolutionary models of halo stars with rotation I: Evidence for differential rotation with depth in stars[J]. ApJ, 1991, 367:239-252.
[8] SONG H F, ZHANG B, ZHANG J, et al. R-process nucleosynthesis and galactic chemical evolution of the ba peak elements[J]. Chin Phys Lett, 2003, 20(11):2084-2087.
[9] HUANG R Q. On rotational mixing in stars[J]. A & A, 2004, 425:591-594.
[10] HUANG R Q. Evolution of rotating binary stars[J]. A & A, 2004, 422:981-986.
[11] von ZEIPEL H. The radiative equilibrium of a rotating system of gaseous masses [J]. Mnras, 1924, 84:665-683.
[12] DOMICIANO DE SOUZA A, KERVELLA P, JANKOV S. The spinning-top Be star Achernar from VLTI-VINCI[J]. A & A, 2003, 407:L47-L50.
[13] NAZÉ Y. Hot stars observed by XMM-Newton. I. The catalog and the properties of OB stars[J]. A & A, 2009, 506(2):1055-1064.
[14] JACKSON S, MACGREGOR K B, SKUMANICH A. Models for the rapidly rotating Be Star Achernar[J]. ApJ, 2004, 606(2):1196-1199.
[15] MAEDER A. Physics, formation and evolution of rotating stars[M]. Germany: Apringer-Verlag, 2009: 22-24.
[16] KERVELLA P, DOMICIANO DE SOUZA A, BENDJOYA P H. The close-in companion of the fast rotating Be star Achernar[J]. A & A, 2008, 484(1):13-16.
[17] KOPAL Z. Close binary systems[M]. New York: Wiley, 1959: 30-35.
[18] SONG H F, ZHONG Z, LU Y. Structure and evolution of rotationally and tidally distorted stars[J]. A & A, 2009, 504(1):161-170.
[19] 宋汉峰,王靖洲,李云.辐射压对非同步转动双星系统洛希势函数的影响[J].物理学报,2013,62(5):059701.1-059701.9. SONG Hanfeng, WANG Jingzhou, LI Yun. The effect of the radiative pressure on the potentialfunction in asynchronous rotational binary[J]. Acta Phy Sin, 2013,62(5):059701.1-059701.9.
[20] SONG H F, LU Y, WANG J Z. Wind anisotropy and angular momentum loss in a massive rotating binary system[J]. PASJ, 2011, 63(4):835-847.
[21] SONG H F, MAEDER A, MEYNET G, et al. Close-binary evolution I: Tidally induced shear mixing in rotating binaries[J]. A & A, 2013, 556:A100-109.
[22] LANDIN N R, MENDES L T S, VAZ P R. Combined effects of tidal and rotational distortions on the equilibrium configuration of low-mass, pre-main sequence stars [J]. A & A, 2009, 494(1):209-227.
[23] 詹琼,宋汉峰,邰丽婷,等.转动潮汐变形双星理论模型研究[J].物理学报,2015,64(8):089701.1-089701.9. ZHAN Qiong, SONG Hanfeng, TAI Liting, et al. The investigation of the theoretical model of the rotationally and tidally distorted binaries[J]. Acta Phys Sin, 2015, 64:089701.1-089701.9.
[24] MEYNET G, MAEDER A. Stellar evolution with rotation. I. The computational method and the inhibiting effect of the μ-gradient[J]. A & A, 1997, 321:465-476.
[25] MAEDER A, MEYNET G. The evolution of rotating stars[J]. ARA & A, 2000, 38:143-190.
[26] LANGER N. Coupled mass and angular momentum loss of massive main sequence stars[J]. A & A, 1998, 329:551-558.
[27] HEGER A, LANGER N. The spin-up of contracting red supergiants[J]. A & A, 1998, 334:210-220.
[28] KAEHLER H. A self-consistent treatment of the mechanical structure of contact binaries[J]. A & A, 1986, 157(2):329-334.
[29] DOMICIANO DE SOUZA A, KERVELLA P, MOSER FAES D, et al. The environment of the fast rotating star Achernar. III. Photospheric parameters revealed by the VLTI [J]. A & A, 2014, 569:A47.1-A47.5.
[30] MAEDER A. Stellar evolution with rotation IV: von Zeipels theorem and anisotropic losses of mass and angular momentum[J]. A & A, 1999, 347:185-193.
[31] ESPINOSA LARA F, RIEUTORD M. Gravity darkening in rotating stars[J]. A & A, 2011, 533:A47.1-A47.5.
[32] CLARET A. On the deviations of the classical von Zeipels theorem at the upper layers of rotating stars[J]. A & A, 2012, 538:A3.1-A3.4.
[33] ZAHN J P. On the shape of rapidly rotating stars[J]. A & A, 2010, 517:A7.1-A7.4.
[34] LUCY L B. Gravity-darkening for stars with convective envelopes[J]. Zeit Fur Astrophys, 1967, 65:89-92.
[1] 王靖洲1,宋汉峰1,2. 转动潮汐变形双星表面重力加速度的数值模拟[J]. J4, 2011, 46(7): 43-47.
[2] 卢媛1,宋汉峰2,钟振3. 三轴椭球体模型中星风物质损失率的分布[J]. J4, 2010, 45(9): 90-95.
[3] 卢媛1,宋汉峰1,2, 钟振1. 转动双星系统的星风和角动量损失及演化[J]. J4, 2010, 45(3): 23-28.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!