山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (5): 48-60.doi: 10.6040/j.issn.1671-9352.0.2015.164
邰丽婷1,宋汉峰1,2,3*,王江涛1,詹琼1
TAI Li-ting1, SONG Han-feng1,2,3*, WANG Jiang-tao1, ZHAN Qiong1
摘要: 转动和潮汐效应是影响恒星结构和演化非常重要的物理因素。根据Achernar的观测数据,用考虑转动和潮汐效应的单、双星模型,研究了Achernar引力昏暗现象。发现转动双星模型比单星模型更能符合Achernar的赤道和极半径之比观测值。计算结果表明,初始转动角速度快的恒星,其等价半径和中心密度在主序阶段的开始至40 Myr较大,随后变小。同时,由于初始转动角速度大的恒星,星风携带自转角动量损失多,造成后期演化角速度变小。另外,转动效应能增加恒星的中心集中度,但减少恒星的四极矩、回旋半径、中心温度、氢燃烧产能率,使转动恒星向赫罗图的低温和低光度演化。
中图分类号:
[1] 黄润乾.恒星物理[M].北京:中国科学技术出版社,2006:313-314. [2] PACYNSKI B. Evolutionary processes in close binary systems[J]. ARA&A, 1971, 9:183-208. [3] KIPPENHAHN R, THOMAS H C. In steller rotation[M]. Holland: D Reidal Publ Co Dordrecht, 1970. [4] ENDAL A S, SOFIA S. The evolution of rotating stars I: Method and exploratory calculations for a 7-solar-mass star[J]. ApJ, 1976, 210(15):184-198. [5] PINSONNEAULT M H, KAWALER S D, SOFIA S, et al. Evolutionary models of the rotating sun[J]. ApJ, 1989, 338:424-452. [6] PINSONNEAULT M H, KAWALER S D, DEMARQURE P. Rotation of low-mass stars-A new probe of stellar evolution[J]. ApJS, 1990, 74:501-550. [7] PINSONNEAULT M H, DELIYANNIS C P, DEMARQURE P. Evolutionary models of halo stars with rotation I: Evidence for differential rotation with depth in stars[J]. ApJ, 1991, 367:239-252. [8] SONG H F, ZHANG B, ZHANG J, et al. R-process nucleosynthesis and galactic chemical evolution of the ba peak elements[J]. Chin Phys Lett, 2003, 20(11):2084-2087. [9] HUANG R Q. On rotational mixing in stars[J]. A & A, 2004, 425:591-594. [10] HUANG R Q. Evolution of rotating binary stars[J]. A & A, 2004, 422:981-986. [11] von ZEIPEL H. The radiative equilibrium of a rotating system of gaseous masses [J]. Mnras, 1924, 84:665-683. [12] DOMICIANO DE SOUZA A, KERVELLA P, JANKOV S. The spinning-top Be star Achernar from VLTI-VINCI[J]. A & A, 2003, 407:L47-L50. [13] NAZÉ Y. Hot stars observed by XMM-Newton. I. The catalog and the properties of OB stars[J]. A & A, 2009, 506(2):1055-1064. [14] JACKSON S, MACGREGOR K B, SKUMANICH A. Models for the rapidly rotating Be Star Achernar[J]. ApJ, 2004, 606(2):1196-1199. [15] MAEDER A. Physics, formation and evolution of rotating stars[M]. Germany: Apringer-Verlag, 2009: 22-24. [16] KERVELLA P, DOMICIANO DE SOUZA A, BENDJOYA P H. The close-in companion of the fast rotating Be star Achernar[J]. A & A, 2008, 484(1):13-16. [17] KOPAL Z. Close binary systems[M]. New York: Wiley, 1959: 30-35. [18] SONG H F, ZHONG Z, LU Y. Structure and evolution of rotationally and tidally distorted stars[J]. A & A, 2009, 504(1):161-170. [19] 宋汉峰,王靖洲,李云.辐射压对非同步转动双星系统洛希势函数的影响[J].物理学报,2013,62(5):059701.1-059701.9. SONG Hanfeng, WANG Jingzhou, LI Yun. The effect of the radiative pressure on the potentialfunction in asynchronous rotational binary[J]. Acta Phy Sin, 2013,62(5):059701.1-059701.9. [20] SONG H F, LU Y, WANG J Z. Wind anisotropy and angular momentum loss in a massive rotating binary system[J]. PASJ, 2011, 63(4):835-847. [21] SONG H F, MAEDER A, MEYNET G, et al. Close-binary evolution I: Tidally induced shear mixing in rotating binaries[J]. A & A, 2013, 556:A100-109. [22] LANDIN N R, MENDES L T S, VAZ P R. Combined effects of tidal and rotational distortions on the equilibrium configuration of low-mass, pre-main sequence stars [J]. A & A, 2009, 494(1):209-227. [23] 詹琼,宋汉峰,邰丽婷,等.转动潮汐变形双星理论模型研究[J].物理学报,2015,64(8):089701.1-089701.9. ZHAN Qiong, SONG Hanfeng, TAI Liting, et al. The investigation of the theoretical model of the rotationally and tidally distorted binaries[J]. Acta Phys Sin, 2015, 64:089701.1-089701.9. [24] MEYNET G, MAEDER A. Stellar evolution with rotation. I. The computational method and the inhibiting effect of the μ-gradient[J]. A & A, 1997, 321:465-476. [25] MAEDER A, MEYNET G. The evolution of rotating stars[J]. ARA & A, 2000, 38:143-190. [26] LANGER N. Coupled mass and angular momentum loss of massive main sequence stars[J]. A & A, 1998, 329:551-558. [27] HEGER A, LANGER N. The spin-up of contracting red supergiants[J]. A & A, 1998, 334:210-220. [28] KAEHLER H. A self-consistent treatment of the mechanical structure of contact binaries[J]. A & A, 1986, 157(2):329-334. [29] DOMICIANO DE SOUZA A, KERVELLA P, MOSER FAES D, et al. The environment of the fast rotating star Achernar. III. Photospheric parameters revealed by the VLTI [J]. A & A, 2014, 569:A47.1-A47.5. [30] MAEDER A. Stellar evolution with rotation IV: von Zeipels theorem and anisotropic losses of mass and angular momentum[J]. A & A, 1999, 347:185-193. [31] ESPINOSA LARA F, RIEUTORD M. Gravity darkening in rotating stars[J]. A & A, 2011, 533:A47.1-A47.5. [32] CLARET A. On the deviations of the classical von Zeipels theorem at the upper layers of rotating stars[J]. A & A, 2012, 538:A3.1-A3.4. [33] ZAHN J P. On the shape of rapidly rotating stars[J]. A & A, 2010, 517:A7.1-A7.4. [34] LUCY L B. Gravity-darkening for stars with convective envelopes[J]. Zeit Fur Astrophys, 1967, 65:89-92. |
[1] | 王靖洲1,宋汉峰1,2. 转动潮汐变形双星表面重力加速度的数值模拟[J]. J4, 2011, 46(7): 43-47. |
[2] | 卢媛1,宋汉峰2,钟振3. 三轴椭球体模型中星风物质损失率的分布[J]. J4, 2010, 45(9): 90-95. |
[3] | 卢媛1,宋汉峰1,2, 钟振1. 转动双星系统的星风和角动量损失及演化[J]. J4, 2010, 45(3): 23-28. |
|