山东大学学报(理学版) ›› 2016, Vol. 51 ›› Issue (11): 127-134.doi: 10.6040/j.issn.1671-9352.0.2015.218
• • 上一篇
王晓霞,曹怀信*,查嫽
WANG Xiao-xia, CAO Huai-xin*, ZHA Liao
摘要: 根据量子态之集是一个凸闭集, 证明了广义纠缠鲁棒性定义中的下确界是可以取到的,说明了同一量子态的两个广义最优态的凸组合仍是广义最优态,广义纠缠鲁棒性作为定义态集合上函数是下半连续的。其次,分别给出了一个量子信道不增加(不减少、保持)所有量子态的广义纠缠鲁棒性的充分必要条件。最后, 作为应用得到了相关已有结果。
中图分类号:
[1] HORODECKI M, HORODECKI P, HORODECKI R. Separability of mixed states: necessary and sufficient conditions[J]. Physics Letters A, 1996, 223(1):1-8. [2] WU S J, CHEN X M, ZHANG Y D. A necessary and sufficient criterion for multipartite separable states[J]. Physics Letters A, 2000, 275(4):244-249. [3] PAN J W, SIMON C, BRUKNER C, et al. Entanglement purification for quantum communication[J]. Nature, 2001, 410:1067-1070. [4] PAN J W, GASPARONI S, URSIN R, et al. Experimental entanglement purification of arbitrary unknown states[J]. Nature, 2003, 423(6938):417-422. [5] FAN H. Remarks on entanglement assisted classical capacity[J]. Physics Letters A, 2003, 313:182-187. [6] BENGTSSON I, ZYCZKOWSKI K. Geometry of quantum states: an introduction to quantum entanglement[M]. Cambridge University Press, 2006. [7] HORODECKI R, HORODECKI P, HORODECKI M, et al. Quantum entanglement[J]. Reviews of Modern Physics, 2009, 81:865-942. [8] LI M, FEI S M, LI-JOST X. Quantum entanglement: separability, measure, fidelity of teleportation, and distillation[J]. Advances in Mathematical Physics, 2010, 2010(1687-9120):745-750. [9] HOU J, GUO Y. Constructing entanglement witnesses for states in infinite-dimensional bipartite quantum systems[J]. International Journal of Theoretical Physics, 2011, 50(4):1245-1254. [10] HOU J. A characterization of positive linear maps and criteria of entanglement for quantum states[J]. Journal of Physics A: Mathematical and Theoretical, 2010, 43(38):2611-2619. [11] 崔利凯. 开放量子系统中的纠缠动力学研究[D]. 曲阜师范大学硕士学位论文, 2012. CUI Kaili. Rearch on entanglement dynamics in open quantum system[D]. Qufu: Qufu Normal University, 2012. [12] VIDAL G, TARRACH R. Robustness of entanglement[J]. Physical Review A, 1999, 59(1):141. [13] DU J F, SHI M J, ZHOU X Y, et al. Geometrical interpretation for robustness of entanglement[J]. Physics Letters A, 2000, 267(4):244-250. [14] SIMON C, KEMPE J. Robustness of multiparty entanglement[J]. Physical Review A, 2002, 65(5):052327. [15] STEINER M. Generalized robustness of entanglement[J]. Physical Review A, 2003, 67(5):054305. [16] MAN Z X, XIA Y J, AN N B. Robustness of multiqubit entanglement against local decoherence[J]. Physical Review A, 2008, 78(6):064301. |
[1] | 王丽丽,陈峥立. 关于Wigner-Yanase-Dyson斜信息的一些研究[J]. 山东大学学报(理学版), 2017, 52(8): 43-47. |
|