您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (9): 92-97.doi: 10.6040/j.issn.1671-9352.0.2017.023

• • 上一篇    下一篇

位相分布提前补货时间库存系统最优控制策略

张双,岳德权   

  1. 燕山大学理学院, 河北 秦皇岛 066004
  • 收稿日期:2017-01-23 出版日期:2017-09-20 发布日期:2017-09-15
  • 作者简介:张双(1991— ),女,硕士研究生,研究方向为排队论. E-mail:zhangyouyou1616@126.com
  • 基金资助:
    国家自然科学基金资助项目(71071133);河北省自然科学基金资助项目(A2017203078)

Optimal control polices for an inventory system with phase type distribution of lead time

ZHANG Shuang, YUE De-quan   

  1. School of Science, Yanshan University, Qinhuangdao 066004, Hebei, China
  • Received:2017-01-23 Online:2017-09-20 Published:2017-09-15

摘要: 研究了一个销售损失制的带有位相分布提前补货时间的连续盘点(s, Q)库存系统。运用Markov过程理论,建立系统稳态平衡方程并求出系统稳态概率。此外,构建了服务水平约束下的最小费用优化模型,通过数值算例计算出系统的最优库存策略并进行了系统参数的敏感性分析。

关键词: 位相分布, 控制策略, (s, Q)策略, 库存系统

Abstract: A lost sales inventory system with phase type distribution of lead time and continuous-review (s, Q) replenishment policy was studied. Using the theory of Markov process, the steady state equilibrium equation was established, and the steady probability of the system was obtained. The minimum cost optimization model under certain service level was given. Using numerical example, the optimal inventory policy was calculated, and the sensitivity of the system parameters was analyzed.

Key words: inventory system, phase type distribution, (s, Q)policy, control policy

中图分类号: 

  • O226
[1] CHEN F Y, KRASS D. Inventory models with minimal service level constraints[J]. European Journal of Operational Research, 2001, 134(1):120-140.
[2] 唐应辉,唐小我. 排队论:基础与分析技术[M]. 北京:科学出版社,2006: 1-28. TANG Yinghui, TANG Xiaowo. Queuing theory: foundations and analytical techniques[M]. Beijing: Science Press, 2006: 1-28.
[3] 田乃硕,岳德权. 拟生灭过程与矩阵几何解[M]. 北京:科学出版社,2002: 1-38. TIAN Naishuo, YUE Dequan. Quasi-birth-and-death process and matrix geometric solution[M]. Beijing: Science Press, 2002: 1-38.
[4] 曾勇,董丽华,马建峰. 排队现象的建模、解析与模拟[M]. 西安:西安电子科技大学出版社,2011. ZENG Yong, DONG Lihua, MA Jianfeng. Modeling, analysis and simulation of queuing phenomenon[M]. Xian: Xidian University Press, 2011.
[5] BERMAN O, KIM E. Stochastic models for inventory management at service facilities[J]. Stochastic Models, 1999, 15(4):695-718.
[6] BERMAN O, SAPNA K P. Optimal control of service for facilities holding inventory[J]. Computers & Operations Research, 2001, 28(5):429-441.
[7] SAPNA K P. An (s, Q) Markovian inventory system with lost sales and two demand classes[J]. Mathematical and Computer Modelling, 2006, 43(7/8):687-694.
[8] BERMAN O, KIM E. Dynamic order replenishment policy in internet based supply chains[J]. Mathematical Methods of Operations Research, 2001, 53(3):371-390.
[9] 许一敏,张毕西,吴菊华. 对系统提前期/等待时间敏感的批量排队优化模型[J]. 工业工程与管理,2011,16(3):27-30. XU Yimin, ZHANG Bixi, WU Juhua. Sensitive to system lead time/waiting time batch queuing optimization model[J]. Industrial Engineering and Management, 2011, 16(3):27-30.
[10] 陈弘,刘名武,周宗放,等. 基于排队的库存服务系统最优控制策略[J]. 运筹与管理,2013,22(5):104-110. CHEN Hong, LIU Mingwu, ZHOU Zongfang, et al. Optimal control polices for an inventory service system based on the queueing theory[J]. Operations Research and Management Science, 2013, 22(5):104-110.
[1] 陈利, 杨蕊, 马占友. 对多重休假的带启动-关闭期的Geom/G/1排队性能的仿真实验分析[J]. 山东大学学报(理学版), 2015, 50(08): 46-50.
[2] 刘再明, 于森林. 一个不同到达率及负顾客的离散工作休假排队[J]. 山东大学学报(理学版), 2015, 50(06): 1-6.
[3] 樊剑武 赵晓华 田乃硕 贠小青. 带有负顾客的M/M/1/N单重工作休假排队系统[J]. J4, 2009, 44(8): 68-73.
[4] 岳德权,马金旺,马明建,余 . 具有备用服务员的可修排队系统分析[J]. J4, 2009, 44(3): 39-44 .
[5] 付永红1 ,余眝妙2 ,唐应辉3 ,李才良4 . 两水平修理策略下的M/(Mr,Gs)/1/N/N机器维修模型稳态概率算法与性能分析[J]. J4, 2009, 44(4): 72-78 .
[6] 赵晓华,樊剑武,田乃硕,田瑞玲 . 带有止步和中途退出的M/M/1/N多重工作休假排队系统[J]. J4, 2008, 43(10): 46-51 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!