您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

山东大学学报(理学版) ›› 2017, Vol. 52 ›› Issue (11): 71-81.doi: 10.6040/j.issn.1671-9352.0.2017.164

• • 上一篇    下一篇

(T,N)-蕴涵及其基本性质

于俊红,周红军*   

  1. 陕西师范大学数学与信息科学学院, 陕西 西安 710119
  • 收稿日期:2017-04-17 出版日期:2017-11-20 发布日期:2017-11-17
  • 通讯作者: 周红军(1980— ),男,教授,硕士生导师,研究方向为不确定性推理. E-mail:hjzhou@snnu.edu.cn E-mail:18392534761@163.com
  • 作者简介:于俊红(1989— ),女,硕士研究生,研究方向为不确定性推理. E-mail:18392534761@163.com
  • 基金资助:
    国家自然科学基金资助项目(61473336);陕西省青年科技新星计划项目(2016KJXX-24);中央高校基本科研业务费专项基金特别支持项目(GK201403001)

(T,N)-implication and its basic properties

YU Jun-hong, ZHOU Hong-jun*   

  1. College of Mathematics and Information Science, Shaanxi Normal University, Xian 710119, Shaanxi, China
  • Received:2017-04-17 Online:2017-11-20 Published:2017-11-17

摘要: 模糊蕴涵在模糊逻辑和近似推理领域中发挥着非常重要的作用。 不同的构造方法可以生成不同的模糊蕴涵, 其中常见的模糊蕴涵类有(S,N)-蕴涵、 R-蕴涵、 QL-蕴涵和Yager蕴涵等从经典逻辑中的重言式p→q≡(p∧q)出发, 在模糊逻辑中研究由三角模T和模糊否定N按上述方式生成的模糊蕴涵, 称为(T,N)-蕴涵, 进而研究(T,N)-蕴涵的一些基本性质, 包括输入律与分配性等最后讨论(T,N)-蕴涵与 f-蕴涵、 g-蕴涵、(S,N)-蕴涵和R-蕴涵间的关系

关键词: 模糊否定, f-蕴涵, R-蕴涵, N)-蕴涵, 三角余模, (T, 分配律, (S, 模糊蕴涵, g-蕴涵, 三角模, N)-蕴涵

Abstract: Fuzzy implications play a fundamental role in fuzzy logic and approximate reasoning. According to construction methods, there are mainly four classes of fuzzy implications, namely,(S,N)-implications, R-implications, QL-implications and Yagers generated implications. We introduce a new class of implications, called(T,N)-implications, generated from t-norms T and fuzzy negations N inspired by the classical tautology p→q≡(p∧q). We discuss the properties of(T,N)-implications and study some classical logic tautologies(e.g., law of importation and distributivity over t-norms or t-conorms)for (T,N)-implications. And the relationships of (T,N)-implications to f-implications, g-implications,(S,N)-implications and R-implications are investigated.

Key words: triangular norm, triangular conorm, (T,N)-implication, R-implication, g-implication, fuzzy implication, f-implication, (S,N)-implication, distributivity equation, fuzzy negation

中图分类号: 

  • O142
[1] 王国俊. 非经典数理逻辑与近似推理 [M]. 2 版. 北京: 科学出版社, 2008. WANG Guojun. Non-classical mathematical logic and approximate reasoning[M]. 2rd ed. Beijing: Science Press, 2008.
[2] HÁJEK P. Metamathematics of fuzzy logic[M]. Dordrecht: Kluwer Academic Publishers, 1998.
[3] GOTTWALD S. A treatise on many-valued logic[M]. Baldock: Research Studies Press, 2001.
[4] PEI Daowu. Formalization of implication based fuzzy reasoning method[J]. International Journal of Approximate Reasoning, 2012, 53:837-846.
[5] 李玉, 王贵君. 一类正则蕴涵算子诱导的DISO模糊系统的构造[J]. 山东大学学报(理学版), 2014, 49(6):57-63. LI Yu, WANG Guijun. Structures of DISO fuzzy system induced by a class of regular implication operators[J]. Journal of Shandong University(Natural Science), 2014, 49(6):57-63.
[6] BACZYNSKI M, JAYARAM B. On the characterizations of(S,N)-implication[J]. Fuzzy Sets and Systems, 2007, 158:1713-1727.
[7] MAS M, MONSERRAT M, TORRENS J, et al. A survey on fuzzy implication functions[J]. IEEE Transactions on Fuzzy Systems, 2007, 15(6):1107-1121.
[8] BACZYNSKI M, JAYARAM B. QL-implications: some properties and intersections[J]. Fuzzy Sets and Systems, 2010, 161:158-188.
[9] YAGER R R. Some new classes of implication operators and their role in approximate reasoning[J]. Information Science, 2004, 167(23):193-216.
[10] KLEMENT E P, MESIA R. Triangular norms[M]. Dordrecht: Kluwer Academic Publisher, 2000.
[11] BACZYNSKI M, JAYARAM B. Fuzzy implication[M]. Berlin: Springer, 2008.
[12] FODOR J, ROUBENS M. Fuzzy preference modeling and multicriteria decision support[M]. Dordrecht: Kluwer Academic Publisher, 1994.
[13] SCHWEIZER B, SKLAR A. Probabilistic metric spaces[M]. New York: Dover Publications, 2005.
[14] JAYARM B. On the law of importation (x∧y)→z≡x→(y→z) in fuzzy logic[J]. IEEE Transactions on Fuzzy Systems, 2008, 16:130-144.
[15] BERTOLUZZA C. On the distributivity between t-norms and t-conorms[C] // Proc znd IEEE Int Conf. San Francisco: IEEE, 1993: 140-147.
[16] BERTOLUZZA C, DOLDI V. On the distributivity between t-norms and t-conorms[J]. Fuzzy Sets and Systems, 2004, 142(1):85-104.
[17] ZHANG Fengxia, LIU Huawen. On a new class of implication:(g,u)-implications and distributive equations[J]. International Journal of Approximate Reasoning, 2013, 54:1049-1065.
[1] 彭家寅. 剩余格上的落影模糊滤子[J]. 山东大学学报(理学版), 2018, 53(2): 52-64.
[2] 韩亮,刘华文. 有限链上逻辑算子的分配性方程求解[J]. 山东大学学报(理学版), 2014, 49(2): 29-35.
[3] 巩增泰,齐颖. 基于Archimedean三角模的广义直觉模糊不确定语言变量集成方法[J]. J4, 2013, 48(3): 53-63.
[4] 李莎莎,巩本学. 量子辛型群@(Spq(6))的一种实现[J]. J4, 2010, 45(8): 53-56.
[5] 郭聿琦1,宫春梅2,任学明2. 关于半群上格林关系的一个来龙去脉的综述[J]. J4, 2010, 45(8): 1-18.
[6] 郝加兴,吴洪博. 基于非交换剩余格的模糊蕴涵滤子及其性质[J]. J4, 2010, 45(10): 61-65.
[7] 宋佳,罗敏楠,李永明. 区间值三角模左连续的充要条件[J]. J4, 2009, 44(3): 67-70 .
[8] 刘培德,张 新 . 建筑企业融资方案模糊多目标评价研究[J]. J4, 2008, 43(11): 22-26 .
[9] 巩本学,李莎莎 . O(Spq(4))经由Uq(sp(4))的Jantzen途径实现[J]. J4, 2007, 42(8): 91-94 .
[10] 许 波,李 刚,王振华,林 洪,郑秋生 . 20(S)-原人参二醇衍生物对HT1080细胞侵袭转移的影响[J]. J4, 2007, 42(3): 84-88 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!