《山东大学学报(理学版)》 ›› 2018, Vol. 53 ›› Issue (11): 9-17.doi: 10.6040/j.issn.1671-9352.0.2018.345
何淑仁(),唐斌,邢新峰,石春颖,张秀梅,张晓梅,许效红*()
Shu-ren HE(),Bin TANG,Xin-feng XING,Chun-ying SHI,Xiu-mei ZHANG,Xiao-mei ZHANG,Xiao-hong XU*()
摘要:
采用合金/去合金法,在金-铜合金线表面制备了分级多孔金-铜薄膜结构(Hierarchically porous Au-Cu thin films,HPAFs)。该分级多孔结构是由微米级的大尺寸孔道-系带和纳米级小尺寸系带-孔道构成。通过对电沉积、退火处理及腐蚀条件的控制可以调控表面多孔薄膜层的厚度、结构以及组成。研究结果表明,脱合金处理残留的铜在富金的系带上形成了金主导的AuCu合金-CuOx异质结构,其可以有效地促进分子氧的活化,而分级多孔结构有利于反应物分子在孔内的扩散传质,从而赋予HPAFs催化剂对苯甲醇分子氧氧化反应高催化活性。
中图分类号:
1 |
XU C X , SU J X , XU X H , et al. Low temperature CO oxidation over unsupported nanoporous gold[J]. J Am Chem Soc, 2007, 129 (1): 42- 43.
doi: 10.1021/ja0675503 |
2 |
ZIELASEK V , JVRGENS B , SCHULZ C , et al. Gold catalysts: nanoporous gold foams[J]. Angew Chem Int Ed, 2006, 45 (48): 8241- 8244.
doi: 10.1002/(ISSN)1521-3773 |
3 |
WITTSTOCK A , ZIELASEK V , BIENER J , et al. Nanoporous gold catalysts for selective gas-phase oxidative coupling of methanol at low temperature[J]. Science, 2010, 327 (5963): 319- 322.
doi: 10.1126/science.1183591 |
4 | LI Z W , XU J L , GU X H , et al. Selective gas-phase oxidation of alcohols over nanoporous silver[J]. Chem Cat Chem, 2013, 5 (7): 1705- 1708. |
5 |
HE L , HUANG Y , WANG A , et al. H2 production by selective decomposition of hydrous hydrazine over Raney Ni catalyst under ambient conditions[J]. AIChE J, 2013, 59 (11): 4297- 4302.
doi: 10.1002/aic.v59.11 |
6 |
ZHANG J , LIU P , MA H , et al. Nanostructured porous gold for methanol electro-oxidation[J]. J Phys Chem C, 2007, 111 (28): 10382- 10388.
doi: 10.1021/jp072333p |
7 | ZEIS R , MATHUR A , FRITZ G , et al. Platinum-plated nanoporous gold: an efficient, low Pt loading electrocatalyst for PEM fuel cells[J]. J Power Sources, 2007, 165 (1): 65- 72. |
8 |
CHEN L Y , CHEN N , HOU Y , et al. Geometrically controlled nanoporous PdAu bimetallic catalysts with tunable Pd/Au ratio for direct ethanol fuel cells[J]. ACS Catal, 2013, 3 (6): 1220- 1230.
doi: 10.1021/cs400135k |
9 |
GE X , CHEN L , KANG J , et al. A core-shell nanoporous Pt-Cu catalyst with tunable composition and high catalytic activity[J]. Adv Funct Mater, 2013, 23 (33): 4156- 4162.
doi: 10.1002/adfm.v23.33 |
10 |
WITTSTOCK A , NEUMANN B , SCHAEFER A , et al. Nanoporous Au: an unsupported pure gold catalyst?[J]. J Phys Chem C, 2009, 113 (14): 5593- 5600.
doi: 10.1021/jp808185v |
11 |
YIN H M , ZHOU C Q , XU C X , et al. Aerobic oxidation of d-glucose on support-free nanoporous gold[J]. J Phys Chem C, 2008, 112 (26): 9673- 9678.
doi: 10.1021/jp8019864 |
12 | HAN D Q , XU T T , SU J X , et al. Gas-phase selective oxidation of benzyl alcohol to benzaldehyde with molecular oxygen over unsupported nanoporous gold[J]. Chem Cat Chem, 2010, 2 (4): 383- 386. |
13 |
WANG D S , LI Y D . Bimetallic nanocrystals: liquid-phase synthesis and catalytic applications[J]. Adv Mater, 2011, 23 (9): 1044- 1060.
doi: 10.1002/adma.201003695 |
14 |
JIANG H L , XU Q . Recent progress in synergistic catalysis over heterometallic nanoparticles[J]. J Mater Chem, 2011, 21 (36): 13705- 13725.
doi: 10.1039/c1jm12020d |
15 |
SANKAR M , DIMITRATOS N , MIEDZIAK P J , et al. Designing bimetallic catalysts for a green and sustainable future[J]. Chem Soc Rev, 2012, 41 (24): 8099- 8139.
doi: 10.1039/c2cs35296f |
16 |
YUAN Z Y , SU B L . Insights into hierarchically meso-macroporous structured materials[J]. J Mater Chem, 2006, 16 (7): 663- 677.
doi: 10.1039/B512304F |
17 |
CHEN L H , LI X Y , ROOKE J C , et al. Hierarchically structured zeolites: synthesis, mass transport properties and applications[J]. J Mater Chem, 2012, 22 (34): 17381- 17403.
doi: 10.1039/c2jm31957h |
18 |
ZHOU Z , ZENG T , CHENG Z , et al. Diffusion-enhanced hierarchically macro-mesoporous catalyst for selective hydrogenation of pyrolysis gasoline[J]. AIChE J, 2011, 57 (8): 2198- 2206.
doi: 10.1002/aic.v57.8 |
19 |
DING Y , ERLEBACHER J . Nanoporous metals with controlled multimodal pore size distribution[J]. J Am Chem Soc, 2003, 125 (26): 7772- 7773.
doi: 10.1021/ja035318g |
20 |
DU M , ZHANG H , LI Y , et al. Fabrication and wettability of monolithic bimodal porous Cu with Gasar macro-pores and dealloying nano-pores[J]. Appl Surf Sci, 2015, 353: 804- 810.
doi: 10.1016/j.apsusc.2015.07.020 |
21 |
DU M , ZHANG H , LI Y , et al. Synthesis of a bimodal porous Cu with nanopores on the inner surface of Gasar pores: Influences of preparation conditions[J]. Appl Surf Sci, 2016, 360: 148- 156.
doi: 10.1016/j.apsusc.2015.11.033 |
22 |
BRACEY C L , ELLIS P R , HUTCHINGS G J . Application of copper-gold alloys in catalysis: current status and future perspectives[J]. Chem Soc Rev, 2009, 38 (8): 2231- 2243.
doi: 10.1039/b817729p |
23 |
WANG A Q , LIU X Y , MOU C Y , et al. Understanding the synergistic effects of gold bimetallic catalysts[J]. J Catal, 2013, 308: 258- 271.
doi: 10.1016/j.jcat.2013.08.023 |
24 |
PINA C D , FALLETTA E , ROSSI M . Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold-copper catalyst[J]. J Catal, 2008, 260: 384- 386.
doi: 10.1016/j.jcat.2008.10.003 |
25 |
LI W J , WANG A Q , LIU X Y , et al. Silica-supported Au-Cu alloy nanoparticles as an efficient catalyst for selective oxidation of alcohols[J]. Appl Catal A, 2012, 433/434: 146- 151.
doi: 10.1016/j.apcata.2012.05.014 |
26 |
BAUER J C , VEITH G M , ALLARD L F , et al. Silica-supported Au-CuOx hybrid nanocrystals as active and selective catalysts for the formation of acetaldehyde from the oxidation of ethanol[J]. ACS Catal, 2012, 2 (12): 2537- 2546.
doi: 10.1021/cs300551r |
27 |
BELIN S , BRACEY C L , BRIOIS V , et al. CuAu/SiO2 catalysts for the selective oxidation of propene to acrolein: the impact of catalyst preparation variables on material structure and catalytic performance[J]. Catal Sci Technol, 2013, 3 (11): 2944- 2957.
doi: 10.1039/c3cy00254c |
28 |
ZHAO G , HU H , DENG M , et al. Au/Cu-fiber catalyst with enhanced low-temperature activity and heat transfer for the gas-phase oxidation of alcohols[J]. Green Chem, 2011, 13 (1): 55- 58.
doi: 10.1039/C0GC00679C |
29 |
JIA Q Q , ZHAO D F , TANG B , et al. Synergistic catalysis of Au-Cu/TiO2-NB nanopaper in aerobic oxidation of benzyl alcohol[J]. J Mater Chem A, 2014, 2 (38): 16292- 16298.
doi: 10.1039/C4TA01503G |
30 |
XING X F , HAN D Q , WU Y F , et al. Fabrication and electrochemical property of hierarchically porous Au-Cu films[J]. Mater Lett, 2012, 71: 108- 110.
doi: 10.1016/j.matlet.2011.12.056 |
31 | WAGNER C D , RIGGS W M , DAVIS L E , et al. Handbook of X-ray photoelectron spectroscopy[M]. Minnesota: Perkin-Elmer Corporation, 1979: 82- 83. |
32 |
ZELEKEW O A , KUO D H . Facile synthesis of SiO2@ CuxO@ TiO2 heterostructures for catalytic reductions of 4-nitrophenol and 2-nitroaniline organic pollutants[J]. Appl Surf Sci, 2017, 393: 110- 118.
doi: 10.1016/j.apsusc.2016.10.016 |
33 |
FUJITA T , GUAN P , MCKENNA K , et al. Atomic origins of the high catalytic activity of nanoporous gold[J]. Nat Mater, 2012, 11 (9): 775- 780.
doi: 10.1038/nmat3391 |
34 | FOGLER H S . Elements of chemical reaction engineering[M]. 4th ed New Jersey: Pearson Education Inc, 2006: 839. |
35 | KIM D H , LIM M S . Kinetics of selective CO oxidation in hydrogen-rich mixtures on Pt/alumina catalysts[J]. Appl Catal A, 2002, 224 (1/2): 27- 38. |
36 |
CONTE M , MIYAMURA H , KOBAYASHI S , et al. Spin trapping of Au-H intermediate in the alcohol oxidation by supported and unsupported gold catalysts[J]. J Am Chem Soc, 2009, 131 (20): 7189- 7196.
doi: 10.1021/ja809883c |
[1] | 潘金鼎,李佳琪,冯艳,陈运法,杨军. 负载型钌基纳米结构用于挥发性有机化合物催化氧化的研究[J]. 山东大学学报(理学版), 2017, 52(5): 18-24. |
|