您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (2): 43-47.doi: 10.6040/j.issn.1671-9352.0.2019.129

• • 上一篇    

赋广义Orlicz范数的Orlicz序列空间的k一致凸点

段丽芬1,左明霞2   

  1. 1.通化师范学院数学学院, 吉林 通化 134002;2.哈尔滨理工大学理学院, 黑龙江 哈尔滨 150080
  • 发布日期:2020-02-14
  • 作者简介:段丽芬(1967— ),女,硕士,教授,研究方向为Banach空间几何理论. E-mail:duanlf@126.com
  • 基金资助:
    吉林省教育厅“十三五”科研规划项目(JJKH20180859KJ)

k-uniform rotund points in Orlicz sequence spaces equipped with the generalized Orlicz norm

DUAN Li-fen1, ZUO Ming-xia2   

  1. 1. School of Mathematics, Tonghua Teachers University, Tonghua 134002, Jilin, China;
    2. School of Sciences, Harbin University of Science and Technology, Harbin 150080, Heilongjiang, China
  • Published:2020-02-14

摘要: 利用广义Orlicz范数的特征和处理序列空间理论的技巧,讨论赋广义Orlicz范数的Orlicz序列空间的k一致凸点问题,得到该空间k一致凸点的判别准则,进一步得到该空间局部k一致凸的条件。

关键词: Orlicz序列空间, 广义Orlicz范数, k一致凸点, 局部k一致凸性

Abstract: Using the characteristics of the generalized Orlicz norm and techniques for dealing with sequence space theory, k-uniform rotund points of the Orlicz sequence spaces equipped with the generalized Orlicz norm are discussed. The criterion of k-uniform rotund points in above spaces is given. And both sufficient and necessary conditions are obtained to make above spaces be locally k-uniform rotund.

Key words: Orlicz sequence space, generalized Orlicz norm, k-uniform rotund point, locally k-uniform rotundity

中图分类号: 

  • O177.3
[1] 吴从炘,林萍,卜庆营,等. 序列空间及其应用[M]. 哈尔滨:哈尔滨工业大学出版社,2001. WU Congxin, LIN Ping, BU Qingying, et al. Sequence spaces and its application[M]. Harbin: Harbin Institute of Technology Press, 2001.
[2] KINJO A R. Cooperative “folding transition” in the sequence space facilitates function-driven evolution of protein families[J]. Journal of Theoretical Biology, 2018, 443:18-27.
[3] CHEN Shutao. Geometry of Orlicz spaces[M]. Warszawa, Poland: Dissertations Math, 1996.
[4] 石忠锐,王晓卓. 赋Luxemburg范数的广义Orlicz序列空间的严格凸性质[J]. 系统科学与数学, 2014, 34(2):206-207. SHI Zhongrui, WANG Xiaozhuo. k-rotundity of generalized Orlicz sequence spaces with Luxemburg norm[J]. Journal System Science and Mathematical, 2014, 34(2):206-207.
[5] SHI Zhongrui, WANG Yujiao. The locally uniformly non-square points of Orlicz-Bochner sequence space[J]. Mathematische Nachrichten, 2017, 290(5/6):920-929.
[6] CUI Yunan, DUAN Lifen, HUDZIK H, et al. Basic theory of p-Amemiya norm in Orlicz spaces: extreme points and rotundity in Orlicz spaces endowed with these norms[J]. Nonlinear Analysis: Theory, Methods & Applications, 2008, 69(5/6):1796-1816.
[7] 段丽芬,许晶,崔云安.赋p-Amemiya范数的Orlicz序列空间的端点和严格凸性[J].吉林大学学报(理学版),2012, 50(4):902-906. DUAN Lifen, XU Jing, CUI Yunan. Extreme points and rotundity in Orlicz sequence spaces equipped with p-Amemiya norm[J]. Journal of Jilin University(Science Edition), 2012, 50(4):902-906.
[8] 陈丽丽,崔云安,赵岩峰,等.赋p-Amemiya范数的Misielak-Orlicz序列空间的复凸性[J]. 数学学报,2015, 58(1):169-176. CHEN Lili, CUI Yunan, ZHAO Yanfeng, et al. Complex convexity of Musielak-Orlicz sequence spaces equipped with the p-Amemiya norm[J]. Acta Mathematica Sinica, 2015, 58(1):169-176.
[9] CUI Yunan, HUDZIK H, WISLA M. M-constants, dominguez-benavides coefficient, and weak fixed point property in Orlicz sequence spaces equipped with the p-Amemiya norm[J]. Fixed Point Theory and Applications, 2016(1):1-14.
[10] 段丽芬,左明霞,王宏志. 赋广义Orlicz范数的Orlicz函数空间的UR点和WUR点[J]. 中山大学学报(自然科学版),2014, 53(2):29-32. DUAN Lifen, ZUO Mingxia, WANG Hongzhi. UR points and WUR points in Orlicz function spaces equipped with the generalized Orlicz norm[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2014, 53(2):29-32.
[11] 段丽芬,程亚焕,左明霞. 赋广义Orlicz范数的Orlicz函数空间的k一致凸点[J]. 复旦学报(自然科学版),2016, 55(3):304-309. DUAN Lifen, CHENG Yahuan, ZUO Mingxia. k-uniform rotund points in Orlicz function spaces endowed with the generalized Orlicz norm[J]. Journal of Fudan University(Natural Science), 2016, 55(3):304-309.
[12] 张静,段丽芬,左明霞. 赋广义Orlicz范数Orlicz序列空间的k-端点和k-强端点[J]. 东北师大学报(自然科学版),2014, 46(4):38-42. ZHANG Jing, DUAN Lifen, ZUO Mingxia. k-extreme points and k-strongly extreme points in Orlicz sequence spaces endowed with the generalized Orlicz norm[J]. Journal of Northeast Normal University(Natural Science Edition), 2014, 46(4):38-42.
[1] 吴春雪 . Musielak-Orlicz 序列空间的WNUS性质[J]. J4, 2007, 42(3): 18-22 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!