《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (1): 24-28.doi: 10.6040/j.issn.1671-9352.0.2019.156
• • 上一篇
张爽1,2,朱焱1*
ZHANG Shuang1,2, ZHU Yan1*
摘要: 令G是含n个点的边染色图,对G中任意顶点x,定义其色邻域CN(x)为集合{c(xy)|xy∈E(G), y∈V(G)}。如果G中任意相邻的两条边都染有不同的颜色,就称G是正常染色的。证明了如果边染色图G满足对V(G)中任意两点u,v有|CN(u)∪CN(v)|≥4n/3+8,则图G含有一个正常染色2-因子。
中图分类号:
[1] CHOUDUM S A, PAULRAJ M S. Regular factors in K1,3-free graphs[J]. Journal of Graph Theory, 1991, 15(3):259-265. [2] BRANDT S, CHEN G T, FAUDREE R, et al. Degree conditions for 2-factors[J]. Journal of Graph Theory, 1997, 24(2): 165-173. [3] HAGGKVIST R, A talk at intern. colloquium on combinatorics and graph theory at Balatonlelle[R]. Hungary, July 15-19,1996. [4] 丁录顺,王光辉,颜谨.不含三角形图的正常染色路和正常染色圈[J]. 运筹学学报, 2014, 18(3):116-120. DING Lushun, WANG Guanghui, YAN Jin. The properly colored paths and cycles for the triangle-free graphs[J]. Operations Research Transactions, 2014, 18(3):116-120. [5] LO A. An edge-colored version of Diracs theorem[J]. SIAM Journal on Discrete Mathematics, 2014, 28(1):18-36. [6] JACKSON B, YOSHIMOTO K. Even subgraphs of bridgeless graphs and 2-factors of line graphs[J]. Discrete Mathematics, 2007, 307(22):2775-2785. [7] GOULD R J, HYNDS E. A note on cycles in 2-factors of line graphs[J]. Bulletin of ICA, 1999(26):46-48. [8] FAUDREE R, FAVARON O, FLANDRIN E, et al. On 2-factors in claw-free graphs[J]. Discrete Mathematics, 1999, 206(1/2/3):131-137. [9] FAUDREE J R, FAUDREE R J, RYJÁCEK Z. Forbidden subgraphs that imply 2-factors[J]. Discrete Mathematics, 2008, 308(9):1571-1582. [10] PETERSEN J. Die Theorie der regulären graphs[J]. Acta Mathematica, 1891, 15:193-220. [11] NISHIMURA T. Regular factors of line graphs[J]. Discrete Mathematics, 1990, 85(2):215-219. [12] NISHIMURA T. Component factors and induced subgraphs[J]. Journal of Graph Theory, 1996, 22(4):305-308. [13] NISHIMURA T. A degree condition for the existence of k-factors[J]. Journal of Graph Theory, 1992, 16(2):141-151. [14] KUNDU S. The k-factor conjecture is true[J]. Discrete Mathematics, 1973, 6(4):367-376. [15] KATERINIS P. Some results on the existence of 2n-factors in terms of vertex deleted subgraphs[J]. Ars Combin, 1983, 16(B):271-277. [16] IIDA T, NISHIMURA T. Neighborhood conditions and k-factors[J]. Tokyo Journal of Mathematics, 1997, 20(2):411-418. [17] BONDY J A, MURTY U S R. Graph theory with applications[M]. London: Macmillan Education UK, 1976. |
[1] | 宋宝阳,王晓宗,任宇屏. 边染色图中的正常染色的路和圈[J]. J4, 2012, 47(6): 63-66. |
[2] | 徐进1,王光雷2. 边染色图中的长彩色路问题[J]. J4, 2010, 45(12): 22-23. |
[3] | 李硕,李峰,梁峰 . 边染色图中的彩色围长[J]. J4, 2008, 43(6): 19-20 . |
[4] | 高云澍,李国君 . 二分图中含有大圈的2-因子[J]. J4, 2007, 42(4): 28-31 . |
|