您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (2): 33-42.doi: 10.6040/j.issn.1671-9352.0.2019.407

• • 上一篇    

Drazin序的若干性质

庞永锋,魏银,王权   

  1. 西安建筑科技大学理学院, 陕西 西安 710055
  • 发布日期:2020-02-14
  • 作者简介:庞永锋(1975— ),男,博士,教授,研究方向为算子理论与算子代数. E-mail:pangyongfengyw@xauat.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(11401757);陕西省自然科学基金资助项目(2019JM252)

Some properties of Drazin order

PANG Yong-feng, WEI Yin, WANG Quan   

  1. School of Science, Xian University of Architecture and Technology, Xian 710055, Shaanxi, China
  • Published:2020-02-14

摘要: B(H)是Hilbert空间H上的全体有界线性算子构成的集合,首先研究Drazin序在H=R(Ak)⊕N(Ak)空间分解下的几个刻画及相关性质,其次将幂等元的Drazin逆推广到一般代数中,进而研究Drazin序的性质。

关键词: Drazin逆, Drazin序, 幂等元

Abstract: Let B(H) be the set of all bounded linear operators on Hilbert space H. Firstly, some characterizations and related properties of Drazin order in H=R(Ak)⊕N(Ak) space are studied. Secondly, the Drazin inverse of idempotent is generalized in the general algebra, and then some properties of Drazin order are studied.

Key words: Drazin inverse, Drazin order, idempotent

中图分类号: 

  • O177.1
[1] 刘晓冀, 王志坚. 矩阵的Drazin逆及D序[J]. 西安电子科技大学学报(自然科学版), 2001, 28(6):789-791. LIU Xiaoji, WANG Zhijian. Drazin inverse and D order of matrix[J]. Journal of Xidian University(Natural Science Edition), 2001, 28(6):789-791.
[2] 周敏娜. 关于矩阵Γα-Drazin逆和Γα-Drazin序[J]. 科技通报, 2009, 25(2):136-140. ZHOU Minna. Γα-Drazin inverse and Γα-Drazin order on the matrix[J]. Bulletin of Science and Technology, 2009, 25(2):136-140.
[3] 钟金, 刘晓冀. Hilbert空间上算子的Sharp序[J]. 山东大学学报(理学版), 2010, 45(4):82-85. ZHONG Jin, LIU Xiaoji. Sharp order of operator on Hilbert space[J]. Journal of Shandong University(Natural Science), 2010, 45(4):82-85.
[4] 朱辉辉. 环上元素的Moore-Penrose逆及Drazin逆[D]. 南京: 东南大学, 2016. ZHU Huihui. Moore-Penrose inverse and Drazin inverse of elements on the ring[D]. Nanjing: Southeast University, 2016.
[5] 杨小英, 刘新, 王亚强. 两个矩阵和的Drazin逆[J]. 山东科学, 2016, 29(2):88-91. YANG Xiaoying, LIU Xin, WANG Yaqiang. Drazin inverse of two matrix sums[J]. Shandong Science, 2016, 29(2):88-91.
[6] QIN Yonghui, LIU Xiaoji. Some results on the symmetric representation of the generalized Drazin inverse in a Banach algebra[J]. Symmetry, 2019, 11(1):105-113.
[7] WANG Hua, CAI Wu, HUANG Junjie. Drazin inverse of anti-triangular operator matrices[J]. Bulletin of the Malaysian Mathematical Sciences Society, 2019, 42(3):1071-1083.
[8] 杜娟, 王华. 两个有界线性算子和的Drazin逆[J]. 数学杂志, 2018, 38(3):511-519. DU Juan, WANG Hua. Drazin inverse of two bounded linear operator sums[J]. Journal of Mathematics, 2018, 38(3):511-519.
[9] BENABDI E H, BARRAA M. The Drazin and generalized Drazin invertibility of linear combinations of idempotents[J]. Journal of Mathematical Analysis and Applications, 2019, 478(2):1163-1171.
[10] 曹秋红, 谢涛, 左可正. 两个幂等矩阵组合的Drazin逆[J]. 数学的实践与认识, 2018, 48(9):302-307. CAO Qiuhong, XIE Tao, ZUO Kezheng. Drazin inverse of two idempotent matrices[J]. Journal of Mathematics in Practice and Theory, 2018, 48(9):302-307.
[11] 刘晓冀. 算子广义逆的理论及计算[M]. 北京: 科学出版社, 2007:1-6. LIU Xiaoji. The theory and calculation of operator generalized inverse[M]. Beijing: Science Press, 2007: 1-6.
[12] 邓春源, 杜鸿科. Hilbert空间上线性算子的Drazin可逆性[J]. 数学学报, 2007, 50(6):1263-1270. DENG Chunyuan, DU Hongke. Drazin invertibility of linear operators on Hilbert spaces[J]. Acta Mathematica Sinica, 2007, 50(6):1263-1270.
[13] MOSIC D, DJORDJEVIC D S. Weighted pre-orders involving the generalized Drazin inverse[J]. Applied Mathematics and Computation, 2015, 270(1):496-504.
[14] 张世芳, 钟怀杰. 关于正算子的n次方根[J]. 数学研究, 2008, 41(1):51-55. ZHANG Shifang, ZHONG Huaijie. About the n-th root of the positive operator[J]. Journal of Mathematical Study, 2008, 41(1):51-55.
[15] 庞永锋, 杨威. 应用泛函分析基础[M]. 西安: 西安电子科技大学出版社, 2015: 147-151. PANG Yongfeng, YANG Wei. Fundamentals of applied functional analysis[M]. Xian: Xidian University Press, 2015: 147-151.
[16] 王龙.(b, c)-逆及相关广义逆的研究[D]. 南京: 东南大学, 2015. WANG Long.(b, c)-inverse and related generalized inverse research[D]. Nanjing: Southeast University, 2015.
[17] DRAZIN M P. Pseudo-inverses in associative rings and semigroups[J]. American Mathematical Monthly, 1958, 65(7):506-514.
[1] 高仕娟,张建华. 含幂等元的环上的(α,β)-导子的刻画[J]. 《山东大学学报(理学版)》, 2019, 54(4): 1-5.
[2] 邵勇. 半格序完全正则周期半群[J]. 山东大学学报(理学版), 2018, 53(10): 1-5.
[3] 孙晓青,王欣. 巴拿赫代数里2×2阶反三角矩阵的伪Drazin逆[J]. 山东大学学报(理学版), 2017, 52(12): 58-66.
[4] 林屏峰,曾伟,曾纯一. 集合Λ上的半格Γ确定的二元关系半群PΓ(Λ×Λ)的幂等元[J]. J4, 2013, 48(8): 36-40.
[5] 谢涛,左可正. 关于两个幂等算子组合的Drazin逆的若干探讨[J]. J4, 2013, 48(4): 95-103.
[6] 罗永贵,徐波,游泰杰. 半群PHn的每个星理想的秩和幂等元秩[J]. J4, 2013, 48(2): 42-48.
[7] 罗永贵. 半群W(n,r)的非群元秩和相关秩[J]. J4, 2013, 48(12): 70-74.
[8] 赵平. 半群V(n,r)的幂等元秩[J]. J4, 2012, 47(2): 78-81.
[9] 赵平1, 游泰杰2, 徐波2,胡华碧1. 降序且保序有限部分变换半群的幂等元秩[J]. J4, 2011, 46(4): 75-77.
[10] 胡春梅,刘晓冀*. Banach空间中算子加W-权Drazin逆的分裂法[J]. J4, 2010, 45(10): 24-26.
[11] 乔占科. 半环的一类子半环的拟正则性[J]. J4, 2009, 44(8): 56-57.
[12] 王 桥,刘晓冀* . Banach空间中算子广义Drazin逆的刻画及扰动[J]. J4, 2008, 43(8): 42-45 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!