《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (2): 48-56.doi: 10.6040/j.issn.1671-9352.0.2019.408
• • 上一篇
徐秀娟,闫硕,朱叶青
XU Xiu-juan, YAN Shuo, ZHU Ye-qing
摘要: 研究形如div A(x,∇u)=f(x)的非齐次A-调和方程的边值问题,在控制增长条件、强制性条件以及非齐次项的适当可积性假设条件下,利用Hodge分解定理和Sobolev空间分析方法,得到了很弱解的全局正则性,推广了已知的结果。
中图分类号:
[1] 佟玉霞, 谷建涛, 徐秀娟. 一类非齐次A-调和方程很弱解的正则性[J]. 高校应用数学学报:A辑, 2009, 24(3):319-323. TONG Yuxia, GU Jiantao, XU Xiujuan. Regularity for very weak solutions to A-harmonic equation[J]. Applied Mathematics A Journal of Chinese Universities: Ser. A, 2009, 24(3):319-323. [2] IWANIEC T, SBORDONE C. Weak minima of variational integrals[J]. J Reine Angew Math, 1994, 454:143-162. [3] 高红亚. A-调和方程很弱解的正则性[J]. 数学学报, 2001, 44(4):605-610. GAO Hongya. Regularity for very weak solutions of A-harmonic equations[J]. Acta Mathematica Sinica, 2001, 44(4):605-610. [4] 朱坤杰, 陈淑红. 非齐次拟线性A-调和方程很弱解的局部正则性[J]. 厦门大学学报(自然科学版), 2018, 57(1):92-98. ZHU Kunjie, CHEN Shuhong. Regularity for very weak solutions to non-homogeneous quasi-linear A-harmonic equation[J]. Journal of Xiamen University(Natural Science), 2018, 57(1):92-98. [5] 高红亚, 贾苗苗. 障碍问题解的局部正则性和局部有界性[J]. 数学物理学报, 2017, 37(4):706-713. GAO Hongya, JIA Miaomiao. Local regularity and local boundedness for solutions to obstacle problems[J]. Acta Mathematica Scientia, 2017, 37(4):706-713. [6] 周树清, 胡振华, 彭冬云. 一类A-调和方程的障碍问题的很弱解的全局正则性[J]. 数学物理学报, 2014, 34(1):27-38. ZHOU Shuqing, HU Zhenhua, PENG Dongyun. Global regularity for very weak solutions to obstacle promlems corresponding to a class of A-harmonic equations[J]. Acta Mathematica Scientia, 2014, 34(1):27-38. [7] LI Gongbao, MARTIO O. Local and global integrability of gradients in obstacle problems[J]. Annales Academi Scientiarum Fennicæ(Series A. I. Mathematica), 1994, 19(1):25-34. [8] GIAQUINTA M. Multiple integrals in the calculus of variations and nonlinear elliptic systems[M]. New Jersey: Princeton University Press, 1983. [9] ELCRAT A, MEYERS N. Some results on regularity for non-linear elliptic systems and quasi-regular functions[J]. Duke Math J, 1975, 42(1):121-136. [10] IWANIEC T. Harmonic tensor and quasi-regular maps[J]. Ann Math, 1992, 136(3):589-624. [11] GILBARG D, TRUDINGER N S. Elliptic partial differential equations of second order[M]. Berlin: Springer, 2015. [12] 郑神州, 方爱农. 一类非线性椭圆组很弱解的正则性[J]. 数学学报, 1999, 42(1):119-124. ZHENG Shenzhou, FANG Ainong. Regularity of very weak solutions for a class of nonlinear elliptic systems[J]. Acta Mathematica Sinica, 1999, 42(1):119-124. |
[1] | 李娟. 一类非齐次障碍问题的很弱解的局部可积性[J]. J4, 2010, 45(8): 66-70. |
|