《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (2): 118-126.doi: 10.6040/j.issn.1671-9352.0.2019.441
• • 上一篇
杨洋,吴保卫*,王月娥
YANG Yang, WU Bao-wei*, WANG Yue-e
摘要: 研究在事件触发采样方案下,系统含有不确定项以及由控制器切换时滞导致的异步切换的输入输出有限时间稳定性问题。首先,给出系统输入输出有限时间稳定的概念,并基于事件触发采样方案设计了状态反馈控制器。其次,通过多Lyapunov函数和平均驻留时间方法,得到不确定异步切换闭环系统输入输出有限时间稳定的充分条件。最后用一个数值仿真例子说明所得结论的有效性。
中图分类号:
[1] SUN Ximing, WANG Wei, LIU Guoping, et al. Stability analysis for linear switched systems with time-varying delay[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2008, 38(2):528-533. [2] ZHAO Xudong, YIN Shen, LI Hongyi, et al. Switching stabilization for a class of slowly switched systems[J]. IEEE Transactions on Automatic Control, 2015, 60(1):221-226. [3] XIANG W M, JOHNSON T T. Event-triggered control for continuous-time switched linear systems[J]. IET Control Theory and Applications, 2017, 11(11):1694-1703. [4] WANG Y E, KARIMI H R, WU D. Conditions for the stability of switched systems containing unstable subsystems[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2019, 66(4):617-621. [5] LI J H, MA R C, DIMIROVSKI G M, et al. Dwell-time-based stabilization of switched linear singular systems with all unstable-mode subsystems[J]. Journal of the Franklin Institute, 2017, 354(7):2712-2724. [6] FENG Nana, WU Baowei, LIU Lili, et al. Exponential stability of output-based event-triggered control for switched singular systems[J/OL]. Asian Journal of Control, [2019-01-09]. https://doi.org/10.1002/asjc.2035. [7] MA Guoqi, LIU Xinghua, QIN Linlin, et al. Finite-time event-triggered H∞ control for switched systems with time-varying delay[J]. Neurocomputing, 2016, 207:828-842. [8] MA Yajing, WU Baowei, WANG Yuee, et al. Input-output finite time stability of fractional order linear systems with 0 <α<1[J]. Transactions of the Institute of Measurement and Control, 2017, 39(5):653-659. [9] AMATO F, TOMMASI G D, PIRONTI A. Input-output finite-time stabilization of impulsive linear systems: necessary and sufficient conditions[J]. Nonlinear Analysis: Hybrid Systems, 2016, 19:93-106. [10] GUO Yang, YAO Yu, WANG Shicheng, et al. Input-output finite-time stabilization of linear systems with finite-time boundedness[J]. ISA Transactions, 2014, 53(4):977-982. [11] LIANG Jinxia, WU Baowei, WANG Yuee, et al. Input-output finite-time stability of fractional-order positive switched systems[J]. Circuits, Systems, and Signal Processing, 2019, 38(4):1619-1638. [12] ZONG Guangdeng, WANG Ruihua, ZHENG Weixing, et al. Finite-time H∞ control for discrete-time switched nonlinear systems with time delay[J]. International Journal of Robust and Nonlinear Control, 2015, 25(6):914-936. [13] 张耀利, 吴保卫, 王月娥, 等. 切换奇异系统的有限时间稳定[J]. 物理学报, 2014, 63(17):32-41. ZHANG Yaoli, WU Baowei, WANG Yuee, et al. Finite-time stability for switched singular systems[J]. Acta Physica Sinica, 2014, 63(17):32-41. [14] AMATO F, AMBROSINO R, COSENTINO C, et al. Input-output finite time stabilization of linear systems[J]. Automatica, 2010, 46(9):1558-1562. [15] 冯娜娜, 吴保卫. 切换奇异系统事件触发控制的输入输出有限时间稳定[J]. 山东大学学报(理学版), 2019, 54(3):75-84. FENG Nana, WU Baowei. Input-output finite time stability for event-triggered control of switched singular systems[J]. Journal of Shandong University(Natural Science), 2019, 54(3):75-84. [16] 梁金霞, 吴保卫. 分数阶切换系统的输入输出有限时间稳定[J]. 纺织高校基础科学学报, 2018, 31(4):490-496. LIANG Jinxia, WU Baowei. Input-output finite-time stability of fractional order switched systems[J]. Basic Sciences Journal of Textile Universities, 2018, 31(4):490-496. [17] QI Yiwen, CAO Zheng, LIU Jun. Observer-based event-triggered H∞ control for switched linear systems[C] // 11th Asian Control Conference(ASCC). Gold Coast, Australia: IEEE, 2017: 2490-2495. [18] REN Hangli, ZONG Guangdeng, LI Tieshan. Event-triggered finite-time control for networked switched linear systems with asynchronous switching[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2018, 48(11):1874-1884. [19] TABUADA P. Event-triggered real-time scheduling of stabilizing control tasks[J]. IEEE Transactions on Automatic Control, 2007, 52(9):1680-1685. [20] WANG Xin, MA Dan. Event-triggered control for continuous-time switched systems[C] // 27th Chinese Control and Decision Conference(CCDC). Qingdao: IEEE, 2015: 1143-1148. [21] LI Taifang, FU Jun, DENG Fang, et al. Stabilization of switched linear neutral systems: an event-triggered sampling control scheme[J]. IEEE Transactions on Automatic Control, 2018, 63(10):3537-3544. [22] 段长杰, 吴保卫. 基于事件触发的不确定时滞切换系统的有限时间稳定[J]. 纺织高校基础科学学报, 2018, 31(3):356-362. DUAN Changjie, WU Baowei. Finite-time stability for uncertain delay switched systems based on event-triggered[J]. Basic Sciences Journal of Textile Universities, 2018, 31(3):356-362. [23] WANG Yuee, NIU Ben, WU Baowei, et al. Asynchronous switching for switched nonlinear input delay systems with unstable subsystems[J]. Journal of the Franklin Institute, 2018, 355(5):2912-2931. [24] WANG Xiaohong, ZONG Guangdeng, SUN Haibin. Asynchronous finite-time dynamic output feedback control for switched time-delay systems with non-linear disturbances[J]. IET Control Theory and Applications, 2016, 10(10):1142-1150. [25] QI Yiwen, ZENG Pengyu, BAO Wen, et al. Event-triggered robust H∞ control for uncertain switched linear systems[J]. International Journal of Systems Science, 2017, 48(15):1-14. |
[1] | 冯娜娜,吴保卫. 切换奇异系统事件触发控制的输入输出有限时间稳定[J]. 《山东大学学报(理学版)》, 2019, 54(3): 75-84. |
[2] | 丁然 李歧强 梁涛. 具有分解结构的多目的批处理过程短期调度模型[J]. J4, 2010, 45(1): 73-79. |
|