《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (2): 23-32.doi: 10.6040/j.issn.1671-9352.0.2019.509
• • 上一篇
秦玲
QIN Ling
摘要: 由矩阵M=diag[p1,p2,p3]和数字集D={0,e1,e2,e3}所确定的自仿测度μM,D 的谱性和非谱性经过前人的研究已经有了很多结论,这里p1,p2,p3∈Z\{0,±1},e1、e2、e3是R3上的标准正交基。对于一般的整数扩张矩阵M=[p1,p2,p3;p4,p5,p6;p7,p8,p9]和数字集D={0,e1,e2,e3},这里介绍了一种方法去处理μM,D的非谱性。作为应用,这样的一类自仿测度的非谱性质都能被确定。
中图分类号:
[1] HUTCHINSON J E. Fractals and self-similarity[J]. Indiana Univ Math J, 1981, 30(5):713-747. [2] JORGENSEN P E T, PEDERSEN S. Dense analytic subspaces in fractal L2-spaces[J]. Anal Math, 1998, 75(1):185-228. [3] JORGENSEN P E T, PEDERSEN S. Spectral pairs in Cartesian coordinates[J]. Fourier Anal Appl, 1999, 5(4):285-302. [4] FUGLEDE B. Commuting self-adjoint partial differential operators and a group theoretic problem[J]. Funct Anal, 1974, 16(1):101-121. [5] JORGENSEN P E T, PEDERSEN S. Harmonic analysis of fractal measures[J]. Constr Approx, 1996, 12(1):1-30. [6] DUTKAY D E, HAUSSERMANN J, LAI C K. Hadamard triples generate self-affine spectral measures[EB/OL].(2015-06-04)[2019-07-12]. http://arXiv.org/abs/1506.01503. [7] DUTKAY D E, JORGENSEN P E T. Analysis of orthogonality and of orbits in affine iterated function systems[J]. Math Z, 2007, 256(4):801-823. [8] STRICHARTZ R. Remarks on “Dense analytic subspaces in fractal L2-spaces”[J]. Anal Math, 1998, 75(1):229-231. [9] STRICHARTZ R. Mock Fourier series and transforms associated with certain Cantor measures[J]. Anal Math, 2000, 81(1):209-238. [10] LI Jianlin. The cardinality of certain μM,D-orthogonal exponentials[J]. Math Anal Appl, 2010, 362(2):514-522. [11] LI Jianlin. Spectrality of self-affine measures on the three-dimentional Sierpinski gasket[J]. Proc Edinburgh Math Soc, 2012, 55(2):477-496. [12] LI Jianlin. Spectral self-affine measures on the spatial Sierpinski gasket[J]. Monatsh Math, 2015, 176(2):293-322. [13] LI Jianlin. Non-spectrality of self-affine measures on the spatial Sierpinski gasket[J]. Math Anal Appl, 2015, 432(2):1005-1017. [14] 张佳妮,李建林,王琦.空间Sierpinski垫上的五元素正交指数系[J].数学学报,2018,61(4):625-630. ZHANG Jiani, LI Jianlin, WANG Qi. The five-element orthogonal exponentials on the spatial Sierpinski gasket[J]. Acta Mathematica Sinica, 2018, 61(4):625-630. [15] WANG Qi, LI Jianlin. There are eight-element orthogonal exponentials on the spatial Sierpinski gasket[J]. Mathematische Nachrichten, 2019, 292(1):211-226. [16] 王琦. 谱自仿测度理论中相关问题的研究[D]. 西安:陕西师范大学,2019. WANG Qi. The related problems on spectral self-affine measures[D]. Xian: Shaanxi Normal University, 2019. [17] LI Jianlin. Spectra self-affine measures in Rn[J]. Proc Edinburgh Math Soc, 2007, 50(1):197-215. |
[1] | 张陇生. 一类三元素数字集的平面自仿测度的非谱性质[J]. J4, 2011, 46(2): 5-8. |
|