《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (4): 118-126.doi: 10.6040/j.issn.1671-9352.0.2019.716
• • 上一篇
张茜1,苏烨1,秦静1,2*
ZHANG Xi1, SU Ye1, QIN Jing1,2*
摘要: 基于全同态加密技术,构造了一个安全计算集合成员关系问题的多方协议。通过将判定集合成员关系问题转化为范德蒙行列式求值问题,该协议解决了已有研究成果中集合阶数的泄露问题,提高了安全性;并证明其在静态半诚实敌手模型下的安全性。该协议还具有判断集合是否有交集的功能。
中图分类号:
[1] YAO A C. Protocols for secure computations[C] //23rd Annual Symposium on Foundations of Computer Science(SFCS 1982), November 3-5, 1982. Chicago: IEEE, 1982: 160-164. [2] GOLDREICH O, MICALI S, WIGDERSON A. How to play any mental game or a completeness theorem for protocols with honest majority[C] //STOC. [S.l.] :[s.n.] , 1987: 218-229. [3] GOLDREICH O. Foundations of cryptography: volume 1[J]. Current Methods in Inorganic Chemistry, 2007, 39(509):359-364. [4] CANETTI R. Security and composition of multiparty cryptographic protocols[J]. Journal of Cryptology, 2000, 13(1):143-202. [5] RUJ S, STOJMENOVIC M, NAYAK A. Decentralized access control with anonymous authentication of data stored in clouds[J]. IEEE Transactions on Parallel and Distributed Systems, 2014, 25(2):384-394. [6] DAN B, GIOVANNI D C, RAFAIL O, et al. Public key encryption with keyword search[C] // EUROCRYPT, 2004: 506-522 [7] FU S J, YU Y P, XU M. A secure algorithm for outsourcing matrix multiplication in the cloud[C] //Proceedings of the Fifth ACM International Workshop on Security in Cloud Computing. New York: ACM, 2017: 27-33 [8] SANDHU R S, COYNE E J, FEINSTEIN H L, et al. Role-based access control models[J]. Computer, 1996, 29(2):38-47. [9] 秦静, 张振峰, 冯登国, 等. 一个特殊的安全双方计算协议[J]. 通信学报, 2004, 25(11):35-42. QIN Jing, ZHANG Zhenfeng, FENG Dengguo, et al. A protocol of specific secure two-party computation[J]. Journal of China Institute of Communications, 2004, 25(11):35-42. [10] 秦静, 张振峰, 冯登国,等. 无信息泄漏的比较协议[J]. 软件学报, 2004, 15(3):421-427. QIN Jing, ZHANG Zhenfeng, FENG Dengguo, et al. A protocol of comparing information without leaking[J]. Journal of Software, 2004, 15(3):421-427. [11] GOLDREICH O. The foundations of cryptography-volume 2: basic applications[M]. Cambridge: Cambridge University Press, 2004: 600-764. [12] PINKAS B, SCHNEIDER T, WEINERT C, et al. Efficient circuit-based PSI via cuckoo hashing[C] // EUROCRYPT, 2018, 10822:125-157. [13] QIN Jing, DUAN Hongwei, HU Jiankun. A new Lagrange solution to the privacy-preserving general geometric intersection problem[J]. Journal of Network and Computer Applications, 2014, 46:94-99. [14] HAO C, KIM L, PETER R. Fast private set intersection from homomorphic encryption[A]. IACR Cryptology ePrint Archive, 2017: 299. [15] KALYANASUNDARAM B, SCHINTGER G. The probabilistic communication complexity of set intersection[J]. SIAM Journal on Discrete Mathematics, 1992, 5(4):545-557. [16] EGERT R, FISCHLIN M, GENS D, et al. Privately computing set-union and set-intersection cardinality via bloom filters[J]. European Journal of Operational Research, 2015, 139(2):371-389. [17] CRISTOFARO E D, GASTI P, TSUDIK G. Fast and private computation of cardinality of set intersection and union[C] //Proceedings of International Conference on Cryptology and Network Security. Berlin: Springer, 2012: 218-231. [18] DEBNATH S K, DUTTA R. Efficient private set intersection cardinality in the presence of malicious adversaries[C] //Proceedings of the 9th International Conference on Provable Security. Berlin: Springer, 2015: 326-339. [19] SHI R H. Efficient quantum protocol for private set intersection cardinality[J]. IEEE Access, 2018, 6:73102-73109. [20] HAZAY C, LINDELL Y. Efficient secure two-party protocols[M]. Berlin: Springer, 2010: 7-22. [21] RIVEST R L, ADLEMAN L, DERTOUZOS M L. On data banks and privacy homomorphisms[J]. Foundations of Secure Computation, 1978: 169-179. [22] PAILLIER P. Public-key cryptosystems based on composite degree residuosity classes[J]. Advances in Cryptology-Eurocrypt, 1999, 547(1):223-238. [23] ELGAMAL T. A public key cryptosystem and a signature scheme based on discrete logarithms[J]. IEEE Transactions on Information Theory, 1984, 31(4):469-472. [24] DAN B, GOH E J, NISSIM K. Evaluating 2-DNF formulas on ciphertexts[C] //Proceedings of the 2nd International Conference on Theory of Cryptography. Berlin: Springer, 2005: 325-341. [25] GENTRY C. Fully homomorphic encryption using ideal lattices[C] //Proceedings of the 41st Annual ACM Symposium on Theory of Computing. New York: ACM Press, 2009: 169-178. [26] VAN DIJK M, GENTRY C, HALEVI S V, et al. Fully homomorphic encryption over the integers[C] //Proceedings of the 29th International Conference on Theory and Applications of Cryptographic Techniques. Berlin: Springer, 2010: 24-43. [27] BRAKERSKI Z, GENTRY C, VAIKUNTANATHAN V.(Leveled)fully homomorphic encryption without bootstrapping[C] //Proceedings of the 3rd Innovations in Theoretical Computer Science Conference. New York: ACM Press, 2012: 309-325. [28] KHALIL H, ABED E S, MAROUN C. An efficient FHE scheme to secure cloud computing[C] // ICETE(2). [S.l.] :[s.n.] , 2019: 341-349. [29] 北京大学数学系几何与代数教研室前代数小组. 高等代数[M]. 北京: 高等教育出版社, 2003: 79-81. Pre-algebra Group, Teaching and Research Office of Geometry and Algebra, Department of Mathematics, Peking University. Advanced algebra[M]. Beijing: Higher Education Press, 2003: 79-81. |
[1] | 王爱兰,宋巍涛,赵秀凤. 剩余类环上扩张因子的性质[J]. 山东大学学报 (理学版), 2018, 53(11): 78-84. |
[2] | 王威力,胡斌,赵秀凤. 一种高效的多身份全同态加密方案[J]. 山东大学学报(理学版), 2017, 52(5): 85-94. |
[3] | 石润华,仲红. 一种新型匿名门限秘密共享方案[J]. J4, 2012, 47(11): 31-39. |
[4] | 叶明全1,2, 胡学钢1,伍长荣3. 垂直划分多决策表下基于条件信息熵的隐私保护属性约简[J]. J4, 2010, 45(9): 14-19. |
|