《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (4): 102-107.doi: 10.6040/j.issn.1671-9352.0.2019.815
• • 上一篇
陈倩竹,胡海平*
CHEN Qian-zhu, HU Hai-ping*
摘要: 利用性能估计问题(PEP)方法,通过研究最优解距离‖xN-x*‖2的最坏情况性能,对光滑凸极小化的一阶方法的步长系数进行了优化,使其收敛速度达到O(1/N 2)。
中图分类号:
[1] NESTEROV Y. A method for unconstrained convex minimization problem with the rate of convergence O(1/k2)[J]. Soviet Mathematics Doklady, 1983, 27:372-376. [2] NESTEROV Y. Smooth minimization of non-smooth functions[J]. Math Program, 2005, 103(1):127-152. [3] DRORI Y,TEBOULLE M. Performance of first-order methods for smooth convex minimization: a novel approach[J]. Mathematical Programming, 2014, 145(1/2):451-482. [4] KIM D, FESSLER J A. Optimized first-order methods for smooth convex minimization[J]. Mathematical Programming, 2016, 159(1/2):81-107. [5] TAYLOR A B, HENDRICKX J M, GLINEUR F. Smooth strongly convex interpolation and exact worst-case performance of first-order methods[J]. Mathematical Programming, 2017, 161(1): 307-345. [6] NEMIROVSKY A. Information-based complexity of linear operator equations[J]. Journal of Complexity, 1992, 8(2):153-175. |
[1] | 刘婷婷,陈志勇,李晓琴*,杨文志. 随机变量序列的Berry-Esseen界[J]. 山东大学学报(理学版), 2014, 49(03): 101-106. |
[2] | 张新东,王秋华 . 避免二阶导数计算的Newton迭代法的一个改进[J]. J4, 2007, 42(7): 72-76 . |
|