您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (4): 102-107.doi: 10.6040/j.issn.1671-9352.0.2019.815

• • 上一篇    

基于最优解距离估计的光滑凸极小化的一阶算法

陈倩竹,胡海平*   

  1. 上海大学理学院, 上海 200444
  • 发布日期:2020-04-09
  • 作者简介:陈倩竹(1994— ),女,硕士研究生,研究方向为图像处理与模式识别. E-mail:qianzhuchen@i.shu.edu.cn*通信作者简介:胡海平(1966— ),男,副教授,研究方向为图像处理与模式识别. E-mail:hu_jack@staff.shu.edu.cn

Optimizing the efficiency of first-order methods for the distance to an optimal solution of smooth convex functions

CHEN Qian-zhu, HU Hai-ping*   

  1. School of Science, Shanghai University, Shanghai 200444, China
  • Published:2020-04-09

摘要: 利用性能估计问题(PEP)方法,通过研究最优解距离‖xN-x*2的最坏情况性能,对光滑凸极小化的一阶方法的步长系数进行了优化,使其收敛速度达到O(1/N 2)。

关键词: 一阶方法, 光滑凸极小化, 最坏情况性能分析, 收敛速度

Abstract: We use the performance estimation problem(PEP)method to optimize the step coefficient of the first-order smooth convex minimization method by studying the worst-case estimation of the optimal solution distance ‖xN-x*2, and the convergence rate can reach O(1/N 2).

Key words: first-order method, smooth convex minimization, worst-case performance analysis, rate of convergence

中图分类号: 

  • O224
[1] NESTEROV Y. A method for unconstrained convex minimization problem with the rate of convergence O(1/k2)[J]. Soviet Mathematics Doklady, 1983, 27:372-376.
[2] NESTEROV Y. Smooth minimization of non-smooth functions[J]. Math Program, 2005, 103(1):127-152.
[3] DRORI Y,TEBOULLE M. Performance of first-order methods for smooth convex minimization: a novel approach[J]. Mathematical Programming, 2014, 145(1/2):451-482.
[4] KIM D, FESSLER J A. Optimized first-order methods for smooth convex minimization[J]. Mathematical Programming, 2016, 159(1/2):81-107.
[5] TAYLOR A B, HENDRICKX J M, GLINEUR F. Smooth strongly convex interpolation and exact worst-case performance of first-order methods[J]. Mathematical Programming, 2017, 161(1): 307-345.
[6] NEMIROVSKY A. Information-based complexity of linear operator equations[J]. Journal of Complexity, 1992, 8(2):153-175.
[1] 刘婷婷,陈志勇,李晓琴*,杨文志. 随机变量序列的Berry-Esseen界[J]. 山东大学学报(理学版), 2014, 49(03): 101-106.
[2] 张新东,王秋华 . 避免二阶导数计算的Newton迭代法的一个改进[J]. J4, 2007, 42(7): 72-76 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!