您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2020, Vol. 55 ›› Issue (12): 63-68.doi: 10.6040/j.issn.1671-9352.0.2020.233

• • 上一篇    

一般对称环

秦兰兰1,王尧1,任艳丽2*   

  1. 1.南京信息工程大学数学与统计学院, 江苏 南京 210044;2.南京晓庄学院信息工程学院, 江苏 南京 211171
  • 发布日期:2020-12-01
  • 作者简介:秦兰兰(1994— ), 女, 硕士研究生, 研究方向为环论. E-mail:jsqinlanlan@163.com*通信作者简介:任艳丽(1965— ), 女, 硕士, 教授, 研究方向为环论. E-mail:renyanlisx@163.com
  • 基金资助:
    国家自然科学基金资助项目(11571165);江苏省自然科学基金资助项目(BK20181406)

General symmetric rings

QIN Lan-lan1, WANG Yao1, REN Yan-li2*   

  1. 1. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, Jiangsu, China;
    2. School of Information Engineering, Nanjing Xiaozhuang University, Nanjing 211171, Jiangsu, China
  • Published:2020-12-01

摘要: 在一般环(未必有1)范畴中,左、右对称环的概念是不同的。在一般环范畴中引入一般对称环的概念,给出其刻画,讨论一般对称环与相关环的关系及其环扩张。

关键词: 一般对称环, 右对称环, Baer环, p.p.-环

Abstract: In the general ring(not necessarily with 1)category, the concepts of left and right symmetric rings are different. The concept of general symmetric rings in general ring category is introduced and give its characterization, discuss the relationship between general symmetric rings and related rings as well as their ring extensions.

Key words: general symmetric ring, right symmetric ring, Baer ring, p.p.-ring

中图分类号: 

  • O153.3
[1] SHAFEE B H, NAUMAN S K. On extensions of right symmetric rings without identity[J]. Adv Pure Math, 2014, 4(12):665-673.
[2] LAMBEK J. On the representation of modules by sheaves of modules of quotients[J]. Ring Theory, 1972: 231-234.
[3] ANDERSON D D, CAMILLO V. Semigroups and rings whose zero products commute[J]. Comm Algebra, 1999, 27(6):2847-2852.
[4] MARKS G. Reversible and symmetric rings[J]. J Pure Appl Algebra, 2002, 174(3):311-318.
[5] 李晓伟,任艳丽. 右对称环[J]. 数学理论与应用,2012,32(2):33-38. LI Xiaowei, REN Yanli. Right symmetric rings[J]. Math Theory Appl, 2012, 32(2):33-38.
[6] WANG Zhanping. Extensions of symmetric rings[J]. J Math Res Exp, 2007, 27(2):229-235.
[7] HUH C, KIM H K, KIM N K, et al. Basic examples and extensions of symmetric rings[J]. J Pure Appl Algebra, 2005, 202(1-3):154-167.
[8] ANTOINE R. Nilpotent elements and Armendariz rings[J]. J Algebra, 2008, 319(8):3128-3140.
[9] OUYANG Lunqun, CHEN Huanyin. On weak symmetric rings[J]. Comm Algebra, 2010, 38(2):697-713.
[10] KIM N K, YANG L. Extensions of reversible rings[J]. J Pure Appl Algebra, 2003, 185(1):207-223.
[11] ANDERSON D D, CAMILLO V. Armendariz rings and Gaussian rings[J]. Comm Algebra, 1998, 26(7):2265-2272.
[12] 宿维军. 广义可逆环[J]. 北京师范大学学报(自然科学版),2011,47(1):17-22. SU Weijun. Generalized reversible rings[J]. J Beijing Normal University(Natural Science), 2011, 47(1):17-22.
[13] KIM N K, LEE K H, LEE Y. Power series rings satisfying a zero divisor property[J]. Comm Algebra, 2006, 34(6):2205-2218.
[1] 耿道宏,王尧,任艳丽. 相对于幺半群的α-斜Armendariz环[J]. 山东大学学报(理学版), 2016, 51(2): 1-5.
[2] 王尧, 张玖琳, 任艳丽. 幂零p.p.-环和幂零Baer环的Ore扩张[J]. 山东大学学报(理学版), 2015, 50(04): 76-81.
[3] 王尧1, 姜美美1, 任艳丽2*. 斜多项式环的一些性质[J]. 山东大学学报(理学版), 2014, 49(06): 40-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!