《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (1): 43-51.doi: 10.6040/j.issn.1671-9352.0.2020.466
• • 上一篇
高月月1,李新颖2*,李宁1
GAO Yue-yue1, LI Xin-ying2*, LI Ning1
摘要: 根据法拉第电磁感应定律,细胞内外带电离子穿过细胞膜会产生电磁感应效应,在Chay神经元模型的基础上引入磁通量,建立了四维Chay神经元模型。首先,利用Matcont仿真研究系统的平衡点及稳定性,发现系统随着参数改变会发生鞍结分岔、超临界Hopf分岔以及亚临界Hopf分岔;其次,通过数值模拟探究神经元系统的发放模式;最后,通过电突触耦合,利用相关系数及同步参数等统计量,分析了耦合神经元及全局连接神经元网络的同步问题,进一步探讨了多参数对神经元同步过程的影响。
中图分类号:
[1] CHAY T R, KEIZER J. Minimal model for membrane oscillations in the pancreatic beta-cell[J]. Biophysical Journal, 1983, 42(2):181-189. [2] DUAN Lixia, LU Qishao, WANG Qingyun. Two-parameter bifurcation analysis of firing activities in the Chay neuronal model[J]. Neurocomputer, 2008, 72(1/2/3):341-351. [3] WANG Qingyun, LU Qishao, CHEN Guanrong, et al. Chaos synchronization of coupled neurons with gap junctions[J]. Physics Letters A, 2006, 356(1):17-25. [4] 王青云. 神经元耦合系统同步动力学[M]. 北京: 科学出版社,2008. WANG Qingyun. Synchronization dynamics of coupled neuron system[M]. Beijing: Science Press, 2008. [5] LV Mi, MA Jun, REN Guodong, et al. Model of electrical activity in a neuron under magnetic flow effect[J]. Nonlinear Dynamics, 2016, 85(3):1479-1490. [6] MONDAL A, UPADHYAY R K, MA J, et al. Bifurcation analysis and diverse firing activities of a modified excitable neuron model[J]. Cognitive Neurodynamics, 2019, 13(4):393-407. [7] 于浩,肖晗,司芳源,等.磁流对神经元Chay模型放电模式的影响[J]. 生物物理学, 2017, 5(1):1-7. YU Hao, XIAO Han, SI Fangyuan, et al. Electrical activity in Chay neuronal model under magnetic flow effect[J]. Biophysics, 2017, 5(1):1-7. [8] WANG Haixia, WANG Qingyun, LU Qishao, et al. Equilibrium analysis and phase synchronization of two coupled HR neurons with gap junction[J]. Cognitive Neurodynamics, 2013, 7(2):121-131. [9] LV Mi, MA Jun. Multiple modes of electrical activities in a new neuron model under electromagnetic radiation[J]. Neurocomputing, 2016, 205(12):375-381. [10] FAN Denggui, WANG Qingyun. Synchronization and bursting transition of the coupled Hindmarsh-Rose systems with asymmetrical time-delays[J]. Science China Technological Sciences, 2017, 60(7):1019-1031. [11] HAN F, LU Q S, WIERCIGROCH M, et al. Chaotic burst synchronization in heterogeneous small-world neuronal network with noise[J]. International Journal of Non-linear Mechanics, 2009, 44(3):298-303. [12] 谭安杰,韦笃取,周倩,等.电磁场耦合忆阻神经元的相位同步与电路实现[J]. 中国科学: 技术科学, 2020, 50(2):175-182. TAN Anjie, WEI Duqu, ZHOU Qian, et al. Phase synchronization and circuit implementation of electromagnetic field coupled memristor neurons[J]. Scientia Sinica Technologica, 2020, 50(2):175-182. [13] 袁春华.神经元动力学分析与放电特性的研究[D].天津:天津大学,2017. YUAN Chunhua. Dynamic analysis and firing properties of neurons[D]. Tianjin: Tianjin University, 2017. [14] WANG Qingyun, DUAN Zhisheng, FENG Zhaosheng, et al. Synchronization transition in gap-junction-coupled leech neurons[J]. Physica A: Statistical Mechanics and its Applications, 2008, 387(16/17):4404-4410. [15] WANG Qingyun, LU Qishao, CHEN Guanrong, et al. Ordered bursting synchronization and complex wave propagation in a ring neuronal network[J]. Physica A: Statistical Mechanics and its Applications, 2007, 374(2):869-878. |
[1] | 董向忠, 关杰. SIMON类算法轮函数的线性性质[J]. 山东大学学报(理学版), 2015, 50(09): 49-54. |
[2] | 李述山. 基于尾部样本数据的尾部相关性分析[J]. 山东大学学报(理学版), 2014, 49(12): 49-54. |
[3] | 王灵垠1,刘琚2. 降低OFDM系统峰均功率比的时频联合块交织方法[J]. J4, 2012, 47(11): 83-87. |
|