您的位置:山东大学 -> 科技期刊社 -> 《山东大学学报(理学版)》

《山东大学学报(理学版)》 ›› 2021, Vol. 56 ›› Issue (1): 43-51.doi: 10.6040/j.issn.1671-9352.0.2020.466

• • 上一篇    

电磁感应下Chay神经元的放电分岔特性与同步

高月月1,李新颖2*,李宁1   

  1. 1.兰州交通大学数理学院, 甘肃 兰州 730070;2.兰州交通大学电子与信息工程学院, 甘肃 兰州 730070
  • 发布日期:2021-01-05
  • 作者简介:高月月(1995— ),女,硕士研究生,研究方向为动力系统的分岔与混沌. E-mail:978726146@qq.com*通信作者简介:李新颖(1978— ),女,硕士,副教授,研究方向为智能信息处理和动力系统的分岔与混沌. E-mail:lixinying@mail.lzjtu.cn
  • 基金资助:
    甘肃省自然科学基金资助项目(20JR5RA397);国家自然科学基金资助项目(11672121);甘肃省科技计划资助项目(18YF1WA059)

Firing bifurcation characteristics and synchronization of Chay neuron under electromagnetic induction

GAO Yue-yue1, LI Xin-ying2*, LI Ning1   

  1. 1. School of Mathematics and Physics, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China;
    2. School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou 730070, Gansu, China
  • Published:2021-01-05

摘要: 根据法拉第电磁感应定律,细胞内外带电离子穿过细胞膜会产生电磁感应效应,在Chay神经元模型的基础上引入磁通量,建立了四维Chay神经元模型。首先,利用Matcont仿真研究系统的平衡点及稳定性,发现系统随着参数改变会发生鞍结分岔、超临界Hopf分岔以及亚临界Hopf分岔;其次,通过数值模拟探究神经元系统的发放模式;最后,通过电突触耦合,利用相关系数及同步参数等统计量,分析了耦合神经元及全局连接神经元网络的同步问题,进一步探讨了多参数对神经元同步过程的影响。

关键词: 平衡点分析, 完全同步, 相关系数, 同步参数, 双参数分析

Abstract: According to Faraday law of electromagnetic induction, charged ions inside and outside the cell through the cell membrane to produce an electromagnetic induction effect, and a four-dimensional Chay neuron model is established by introducing magnetic flux on the basis of the Chay neuron model. Firstly, the equilibrium point and stability of the system are studied by Matcont simulation, and it is found that the system undergoes saddle-node bifurcation, supercritical Hopf bifurcation and subcritical Hopf bifurcation as the parameters change; secondly, the firing mode of the neuronal system is investigated by numerical simulation; finally, the coupled neurons and global connections are analyzed by electrical synaptic coupling, using statistics such as correlation coefficient and synchronization parameter. The synchronization problem of neuronal networks is further explored by the influence of multiple parameters on the synchronization process of neurons.

Key words: equilibrium point analysis, complete synchronization, correlation coefficient, synchronization parameter, two-parameter analysis

中图分类号: 

  • O193
[1] CHAY T R, KEIZER J. Minimal model for membrane oscillations in the pancreatic beta-cell[J]. Biophysical Journal, 1983, 42(2):181-189.
[2] DUAN Lixia, LU Qishao, WANG Qingyun. Two-parameter bifurcation analysis of firing activities in the Chay neuronal model[J]. Neurocomputer, 2008, 72(1/2/3):341-351.
[3] WANG Qingyun, LU Qishao, CHEN Guanrong, et al. Chaos synchronization of coupled neurons with gap junctions[J]. Physics Letters A, 2006, 356(1):17-25.
[4] 王青云. 神经元耦合系统同步动力学[M]. 北京: 科学出版社,2008. WANG Qingyun. Synchronization dynamics of coupled neuron system[M]. Beijing: Science Press, 2008.
[5] LV Mi, MA Jun, REN Guodong, et al. Model of electrical activity in a neuron under magnetic flow effect[J]. Nonlinear Dynamics, 2016, 85(3):1479-1490.
[6] MONDAL A, UPADHYAY R K, MA J, et al. Bifurcation analysis and diverse firing activities of a modified excitable neuron model[J]. Cognitive Neurodynamics, 2019, 13(4):393-407.
[7] 于浩,肖晗,司芳源,等.磁流对神经元Chay模型放电模式的影响[J]. 生物物理学, 2017, 5(1):1-7. YU Hao, XIAO Han, SI Fangyuan, et al. Electrical activity in Chay neuronal model under magnetic flow effect[J]. Biophysics, 2017, 5(1):1-7.
[8] WANG Haixia, WANG Qingyun, LU Qishao, et al. Equilibrium analysis and phase synchronization of two coupled HR neurons with gap junction[J]. Cognitive Neurodynamics, 2013, 7(2):121-131.
[9] LV Mi, MA Jun. Multiple modes of electrical activities in a new neuron model under electromagnetic radiation[J]. Neurocomputing, 2016, 205(12):375-381.
[10] FAN Denggui, WANG Qingyun. Synchronization and bursting transition of the coupled Hindmarsh-Rose systems with asymmetrical time-delays[J]. Science China Technological Sciences, 2017, 60(7):1019-1031.
[11] HAN F, LU Q S, WIERCIGROCH M, et al. Chaotic burst synchronization in heterogeneous small-world neuronal network with noise[J]. International Journal of Non-linear Mechanics, 2009, 44(3):298-303.
[12] 谭安杰,韦笃取,周倩,等.电磁场耦合忆阻神经元的相位同步与电路实现[J]. 中国科学: 技术科学, 2020, 50(2):175-182. TAN Anjie, WEI Duqu, ZHOU Qian, et al. Phase synchronization and circuit implementation of electromagnetic field coupled memristor neurons[J]. Scientia Sinica Technologica, 2020, 50(2):175-182.
[13] 袁春华.神经元动力学分析与放电特性的研究[D].天津:天津大学,2017. YUAN Chunhua. Dynamic analysis and firing properties of neurons[D]. Tianjin: Tianjin University, 2017.
[14] WANG Qingyun, DUAN Zhisheng, FENG Zhaosheng, et al. Synchronization transition in gap-junction-coupled leech neurons[J]. Physica A: Statistical Mechanics and its Applications, 2008, 387(16/17):4404-4410.
[15] WANG Qingyun, LU Qishao, CHEN Guanrong, et al. Ordered bursting synchronization and complex wave propagation in a ring neuronal network[J]. Physica A: Statistical Mechanics and its Applications, 2007, 374(2):869-878.
[1] 董向忠, 关杰. SIMON类算法轮函数的线性性质[J]. 山东大学学报(理学版), 2015, 50(09): 49-54.
[2] 李述山. 基于尾部样本数据的尾部相关性分析[J]. 山东大学学报(理学版), 2014, 49(12): 49-54.
[3] 王灵垠1,刘琚2. 降低OFDM系统峰均功率比的时频联合块交织方法[J]. J4, 2012, 47(11): 83-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!